932 resultados para Atmospheric composition and structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed-species bird flocks are attractive models for the investigation of geographical variation in animal communities, as they represent a subset of the avifauna in most forested regions of the world. Yet studies of the regional variation in flock size and the composition of flocks are few, due to the predominance of studies carried out at single study site. Here, we review nine studies of mixed-species flocks conducted at 16 sites along the Western Ghats in India and in Sri Lanka. We find that flock size varies as much within this region as it does globally, with observation time being a confounding variable. Flock composition, however, is predictably related to elevation. Flocks at high elevations (>1200 m) in the Western Ghats strongly resemble flocks at high elevations in the mountain ranges of Sri Lanka in their composition, especially at the family level. We compare these flocks to flocks of other regions and make recommendations on study methodology that can facilitate comparisons across studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last couple of decades, the oil palm has emerged as the second largest source of edible oil in the world. Recently oil palm has been introduced commercially in India to augment edible oil supply in the country. Currently, about 10,000 hectares are under oil palm cultivation in India, and it is envisaged to cover about 6 lakh hectares in the coming years. Though oil palm is a major commercial oil crop, not much basic information on the lipids of the fruit (the source of palm oil) is available even where oil palm is cultivated in a very large scale. Being a new crop to India, it is of paramount importance to understand the basic chemistry/biochemistry of the lipids, which in turn, may find practical applications in the area of processing and product development. The present investigation entitled "Studies on the Composition and Structure of Palm Oil Glycerides" was designed with a view to elucidate the lipid composition and structure under conditions such as fruit development and processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an area of tropical seasonal semideciduous forest, the soil characteristics, floristic composition, physiognomic structure, and the distribution of three regeneration and three dispersal guilds were studied for four stands within the forest that had documented histories of varying degrees of human disturbance. The aim was to study forest regeneration in areas of preserved forest and secondary forest, with parts of both types of forest experiencing either 'intensive' or 'occasional' cattle trampling. The study was carried out in the Sebastiao Aleixo da Silva Ecological Station, Bauru, São Paulo State, Brazil. Two stands were called 'secondary' because they corresponded to forest tracts that were felled and occupied by crops and pastures in the past and then abandoned to forest regeneration ca. 40 years before this study. The other two stands, called 'preserved', corresponded to areas of the fragment where the forest has been maintained with only minor human impacts. The arboreal component of the tree community (diameter at breast height or dbh greater than or equal to 5 cm) was sampled in 20 plots of 40 m x 40 m, and the subarboreal component (diameter at the base of the stem or dbs < 5 cm and height greater than or equal to 0.5 m) in subplots of 40 m x 2 m. Physiognomic features, such as canopy height and density of climbing plants, were registered all over a 5 m x 5 m gridline laid on the sample plots. Soil bulk samples were collected for chemical and textural analyses. Most detected differences contrasted the secondary to the preserved forest stands. The soils of the secondary stands showed higher proportions of sand and lower levels of mineral nutrients and organic matter than those of the preserved stands, probably due to higher losses by leaching and erosion. Compared to the secondary stands, the preserved ones had higher proportions of tall trees, higher mean canopy height, lower species diversity, higher abundance of autochorous and shade-tolerant climax species, and lower abundance of pioneer and light-demanding climax species. Despite the high proportion of species shared by the preserved and secondary stands (108 out of 139), they differed consistently in terms of density of the most abundant species. on the other hand, the secondary and preserved stands held similar values for tree density and basal area, suggesting that 40 years were enough to restore these features. Effects of cattle trampling on the vegetation were detected for the frequency of trees of anemochorous and zoochorous species, which were higher in the stands under occasional and intensive cattle trampling, respectively. The density of thin climbers was lower in the stands with intensive trampling. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Methods and Results: Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13·5 or 54 μg SN ml-1 for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. Conclusions: In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. Significance and Impact of the Study: This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer modified bitumens, PMBs, are usually prepared at high temperature and subsequently stored for a period of time, also at high temperature. The stability of PMBs, in these conditions, has a decisive influence in order to obtain the adequate performances for practical applications. In this article the attention is focused in the analysis of the factors that determine the stability of styrene–butadiene–styrene copolymer (SBS)/sulfur modified bitumens when the mixtures are maintained at high temperature. Bitumens from different crude oil sources were used to prepare SBS/sulfur modified bitumens. Changes in the values of viscosity, softening point, as well as in the morphology of PMB samples, stored at 160 °C, were related to the bitumen chemical composition and to the amount of asphaltene micelles present in the neat bitumen used in their preparation El trabajo se centra en el estudio de la influencia de la estructura /composición del betún sobre la compatibilidad del sistema betún/SBS. Cuatro betunes provenientes de dos crudos distintos se seleccionaron y sus mezclas se utilizaron para preparar betunes modificados con contenidos de SBS del 3% en peso

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more information on aerosol chemistry. Before the determination of aerosol chemical composition by the various available analytical techniques, aerosol particles must be reliably sampled and prepared. Indeed, sampling is one of the most challenging steps in aerosol studies, since all available sampling techniques harbor drawbacks. In this study, novel methodologies were developed for sampling and determination of the chemical composition of atmospheric aerosols. In the particle-into-liquid sampler (PILS), aerosol particles grow in saturated water vapor with further impaction and dissolution in liquid water. Once in water, the aerosol sample can then be transported and analyzed by various off-line or on-line techniques. In this study, PILS was modified and the sampling procedure was optimized to obtain less altered aerosol samples with good time resolution. A combination of denuders with different coatings was tested to adsorb gas phase compounds before PILS. Mixtures of water with alcohols were introduced to increase the solubility of aerosols. Minimum sampling time required was determined by collecting samples off-line every hour and proceeding with liquid-liquid extraction (LLE) and analysis by gas chromatography-mass spectrometry (GC-MS). The laboriousness of LLE followed by GC-MS analysis next prompted an evaluation of solid-phase extraction (SPE) for the extraction of aldehydes and acids in aerosol samples. These two compound groups are thought to be key for aerosol growth. Octadecylsilica, hydrophilic-lipophilic balance (HLB), and mixed phase anion exchange (MAX) were tested as extraction materials. MAX proved to be efficient for acids, but no tested material offered sufficient adsorption for aldehydes. Thus, PILS samples were extracted only with MAX to guarantee good results for organic acids determined by liquid chromatography-mass spectrometry (HPLC-MS). On-line coupling of SPE with HPLC-MS is relatively easy, and here on-line coupling of PILS with HPLC-MS through the SPE trap produced some interesting data on relevant acids in atmospheric aerosol samples. A completely different approach to aerosol sampling, namely, differential mobility analyzer (DMA)-assisted filter sampling, was employed in this study to provide information about the size dependent chemical composition of aerosols and understanding of the processes driving aerosol growth from nano-size clusters to climatically relevant particles (>40 nm). The DMA was set to sample particles with diameters of 50, 40, and 30 nm and aerosols were collected on teflon or quartz fiber filters. To clarify the gas-phase contribution, zero gas-phase samples were collected by switching off the DMA every other 15 minutes. Gas-phase compounds were adsorbed equally well on both types of filter, and were found to contribute significantly to the total compound mass. Gas-phase adsorption is especially significant during the collection of nanometer-size aerosols and needs always to be taken into account. Other aims of this study were to determine the oxidation products of β-caryophyllene (the major sesquiterpene in boreal forest) in aerosol particles. Since reference compounds are needed for verification of the accuracy of analytical measurements, three oxidation products of β-caryophyllene were synthesized: β-caryophyllene aldehyde, β-nocaryophyllene aldehyde, and β-caryophyllinic acid. All three were identified for the first time in ambient aerosol samples, at relatively high concentrations, and their contribution to the aerosol mass (and probably growth) was concluded to be significant. Methodological and instrumental developments presented in this work enable fuller understanding of the processes behind biogenic aerosol formation and provide new tools for more precise determination of biosphere-atmosphere interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.