984 resultados para Atmospheric Science
Resumo:
2011 is the centenary year of the short paper (Wilson,1911) first describing the cloud chamber, the device for visualising high-energy charged particles which earned the Scottish physicist Charles Thomas Rees (‘CTR’) Wilson the 1927 Nobel Prize for physics. His many achievements in atmospheric science, some of which have current relevance, are briefly reviewed here. CTR Wilson’s lifetime of scientific research work was principally in atmospheric electricity at the Cavendish Laboratory, Cambridge; he was Reader in Electrical Meteorology from 1918 and Jacksonian Professor from 1925 to 1935. However, he is immortalised in physics for his invention of the cloud chamber, because of its great significance as an early visualisation tool for particles such as cosmic rays1 (Galison, 1997). Sir Lawrence Bragg summarised its importance:
Resumo:
Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian region. I present a review of the current state of knowledge of aerosol chemistry in India and propose future directions.
Resumo:
This study reports characteristics of inertia-gravity waves (IGWs) in the atmospheric boundary layer during the passage of Tropical Cylone-03B, using the Doppler Sound Detection and Ranging (SODAR) observations at the Indian tropical station of Gadanki (13.45 degrees N, 79.2 degrees E; near the east coast of India). Wavelet analysis of horizontal winds indicates significant wave motion (60h) near the characteristic inertial period. The hodograph analysis of the filtered winds shows an anti-cyclonic turning of horizontal wind with height and time, indicating the presence of IGW. This study finds important implications in boundary layer dynamics during the passage of tropical cyclones.
Resumo:
Atmospheric Boundary layer (ABL) is the layer just above the earth surface and is influenced by the surface forcing within a short period of an hour or less. In this thesis, characteristics of the boundary layer over ocean, coastal and inland areas of the atmosphere, especially over the monsoon regime are thoroughly studied. The study of the coastal zone is important due to its high vulnerability mainly due to sea breeze circulation and associated changes in the atmospheric boundary layer. The major scientific problems addressed in this thesis are diurnal and seasonal variation of coastal meteorological properties, the characteristic difference in the ABL during active and weak monsoons, features of ABL over marine environment and the variation of the boundary layer structure over an inland station. The thesis describes the various features in the ABL associated with the active and weak monsoons and, the surface boundary layer properties associated with the active and weak epochs. The study provides knowledge on MABL and can be used as the estimated values of boundary layer parameters over the marine atmosphere and to know the values and variabilities of the ABL parameters such as surface wind, surface friction, drag coefficient, wind stress and wind stress curl.
Resumo:
The atmospheric composition of West Africa reflects the interaction of various dynamical and chemical systems (i.e. biogenic, urban, convective and long-range transport) with signatures from local to continental scales. Recent measurements performed during the African Monsoon Multidisciplinary Analyses (AMMA) observational periods in 2005 and 2006 provide new data which has allowed new insight into the processes within these systems that control the distribution of ozone and its precursors. Using these new data and recently published results, we provide an overview of these systems with a particular emphasis on ozone distributions over West Africa during the wet season.
Resumo:
An underestimate of atmospheric blocking occurrence is a well-known limitation of many climate models. This article presents an analysis of Northern Hemisphere winter blocking in an atmospheric model with increased horizontal resolution. European blocking frequency increases with model resolution, and this results from an improvement in the atmospheric patterns of variability as well as a simple improvement in the mean state. There is some evidence that the transient eddy momentum forcing of European blocks is increased at high resolution, which could account for this. However, it is also shown that the increase in resolution of the orography is needed to realise the improvement in blocking, consistent with the increase in height of the Rocky Mountains acting to increase the tilt of the Atlantic jet stream and giving higher mean geopotential heights over northern Europe. Blocking frequencies in the Pacific sector are also increased with atmospheric resolution, but in this case the improvement in orography actually leads to a decrease in blocking
Resumo:
As weather and climate models move toward higher resolution, there is growing excitement about potential future improvements in the understanding and prediction of atmospheric convection and its interaction with larger-scale phenomena. A meeting in January 2013 in Dartington, Devon was convened to address the best way to maximise these improvements, specifically in a UK context but with international relevance. Specific recommendations included increased convective-scale observations, high-resolution virtual laboratories, and a system of parameterization test beds with a range of complexities. The main recommendation was to facilitate the development of physically based convective parameterizations that are scale-aware, non-local, non-equilibrium, and stochastic.
Resumo:
The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn
Resumo:
The microwave radiometer TROWARA measures integrated water vapour (IWV) and integrated cloud liquid water (ILW) at Bern since 1994 with a time resolution of 7 s. In this study, we compare TROWARA measurements with a simulation of summer 2012 in Switzerland performed with the Weather Research and Forecasting (WRF) model. It is found that the WRF model agrees very well with TROWARA’s IWV variations with a mean bias of only 0.7 mm. The ILW distribution of the WRF model, although similar in shape to TROWARA’s distribution, overestimates the fraction of clear sky periods (83% compared to 60%).