997 resultados para Atlantic Forest restoration
Resumo:
High-diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well-established tree nursery in southeastern Brazil, namely (1) in-house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high-diversity reforestation as part of tropical forest restoration. In addition, community-based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.
Resumo:
Over the past 150 years, Brazil has played a pioneering role in developing environmental policies and pursuing forest conservation and ecological restoration of degraded ecosystems. In particular, the Brazilian Forest Act, first drafted in 1934, has been fundamental in reducing deforestation and engaging private land owners in forest restoration initiatives. At the time of writing (December 2010), however, a proposal for major revision of the Brazilian Forest Act is under intense debate in the National Assembly, and we are deeply concerned about the outcome. On the basis of the analysis of detailed vegetation and hydrographic maps, we estimate that the proposed changes may reduce the total amount of potential areas for restoration in the Atlantic Forest by approximately 6 million hectares. As a radically different policy model, we present the Atlantic Forest Restoration Pact (AFRP), which is a group of more than 160 members that represents one of the most important and ambitious ecological restoration programs in the world. The AFRP aims to restore 15 million hectares of degraded lands in the Brazilian Atlantic Forest biome by 2050 and increase the current forest cover of the biome from 17% to at least 30%. We argue that not only should Brazilian lawmakers refrain from revising the existing Forest Law, but also greatly step up investments in the science, business, and practice of ecological restoration throughout the country, including the Atlantic Forest. The AFRP provides a template that could be adapted to other forest biomes in Brazil and to other megadiversity countries around the world.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The analysis of species composition and its effects on sustainability restoration processes in the Atlantic Forest with poor environmental attributes is important to improve rehabilitation techniques for disturbed ecosystems. Reforestation projects were used as Biological Measures (BM) of rehabilitation, where treatments differ in the composition of exotic species, utilized as anthropic pioneers: BM1 - 82% (73% Mimosa caesalpiniifolia Benth, 9% Eucalyptus citriodora Hook.); BM2 - 91% (9%, 82%); and BM3 - 25% (15%, 10%). The monitoring of spontaneous regeneration was evaluated in three 12-year-old reforestation sites between thr rainy season of 2004 and 2005, and compared with an approximately 100-year-old native forest fragment and a grassland: ecosystems with inertial tendency toward recuperation and degradation, respectively. It was detected that exotic species used as anthropic pioneers strongly influenced regeneration: BM1 (75%), BM2 (85%), BM3 (55%), Forest (0%) and Grassland (50%). The highest similarity of species with forest regeneration (5%) was found for treatment BM3.
Resumo:
The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.
Resumo:
We considered whether ecological restoration using high diversity of native tree species serves to restore nitrogen dynamics in the Brazilian Atlantic Forest. We measured delta(15)N and N content in green foliage and soil; vegetation N:P ratio; and soil N mineralization in a preserved natural forest and restored forests of ages 21 and 52 years. Green foliage delta(15)N values, N content, N:P ratio, inorganic N and net mineralization and nitrification rates were all higher, the older the forest. Our findings indicate that the recuperation of N cycling has not been achieved yet in the restored forests even after 52 years, but show that they are following a trajectory of development that is characterized by their N cycling intensity becoming similar to a natural mature forest of the same original forest formation. This study demonstrated that some young restored forests are more limited by N compared to mature natural forests. We document that the recuperation of N cycling in tropical forests can be achieved through ecological restoration actions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
The "Serra do Mar" region comprises the largest remnant of the Brazilian Atlantic Forest. The coast of the Paraná State is part of the core area of the "Serra do Mar" corridor and where actions for biodiversity conservation must be planned. In this study we aimed at characterizing the landscape structure in the APA-Guaraqueçaba, the largest protected area in this region, in order to assist environmental policies of this region. Based on a supervised classification of a mosaic of LANDSAT-5-TM satellite images (from March 2009), we developed a map (1:75,000 scale) with seven classes of land use and land cover and analyzed the relative quantities of forests and modified areas in slopes and lowlands. The APA-Guaraqueçaba is comprised mainly by the Dense Ombrophilous Forest (68.6% of total area) and secondary forests (9.1%), indicating a forested landscape matrix; anthropogenic and bare soil areas (0.8%) and the Pasture/Grasslands class (4.2%) were less representative. Slopes were less fragmented and more preserved (96.3% of Dense Ombrophilous Forest and secondary forest) than lowlands (71.3%), suggesting that restoration initiatives in the lowlands must be stimulated in this region. We concluded that most of the region sustains well-conserved ecosystems, highlighting the importance of Paraná northern coast for the biodiversity maintenance of the Atlantic Forest.
Resumo:
Two adjacent tracts of tropical secondary forest, situated in Itambé do Mato Dentro, south-eastern Brazil, which had been regenerating for 15 and 40 years after clearing, were compared with the purpose of detecting differences in species diversity and composition, species guild composition (regeneration, stratification and dispersion), and stand structure. Four and three 1,125 m² plots laid on the 15- and 40-year-old stands, respectively, sampled 2,430 trees with diameter at the base of the stem > 5 cm. The number of species (S = 199) was high for this forest type and significantly higher for the older stand. Tree density was significantly higher in the younger stand, particularly for smaller trees, whereas the two stands did not differ in both basal area and volume per hectare. Trees of shade-tolerant and understory species were significantly more abundant in the older stand. Though sharing a large proportion of species (49%), the two stands differed significantly in the abundance of many species. Live stumps probably contributed to the relatively quick restoration of some forest characteristics, particularly species diversity, basal area and volume.
Resumo:
The present study describes and evaluates the horizontal and vertical structures of a lowland forest fragment on a hillock in the municipality of Silva Jardim, Rio de Janeiro State, Brazil (22 degrees 31`56 `` S and 42 degrees 20`46 `` W). Twenty plots (10x2m) totaling 0.5ha were laid out following the slope grade using DBH >= 5cm as the inclusion criterion. A total of 734 individuals were encountered, yielding a total density of 1468 ind./ha and a total basal area of 10783m(2). The richness values (129 species/41 families), Shannon-Wiener diversity (4.22) and equitability (0.87) indices indicated an accentuated floristic heterogeneity and low ecological dominance. Lauraceae, Myrtaceae, Fabaceae and Euphorbiaceae showed the greatest species richness, corroborating other studies that indicated these species as the most representative of Atlantic Forest areas in southeastern Brazil. The species with the greatest importance values (VI) were Aparisthmium cordatum, Guapira opposita, Lacistema pubescens, Xylopia sericea, Tapirira guianensis and Piptocarpha macropoda. The high diversity observed was influenced by earlier anthropogenic actions and by the current successional stage. The forest fragment studied demonstrated closer floristic similarity to areas inventoried in a close-by biological reserve than to fragments dispersed throughout the coastal plain. Similarities in soil type, degree of soil saturation and use-history of forest resources all support these relationships. The fragmented physiognomy of the central lowland in this region and the use-history of the landscape make these small remnant forest areas important in terms of establishing strategies for landscape restoration and species conservation.
Resumo:
Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations of four tree species occurring in both planting mixtures were compared between a legume-dominated, species-poor direct seeding mixture of early-successional species ("legume mixture"), and a species-diverse, legume-poor mixture of all successional groups ("diverse mixture"). After 7 years, the legume mixture had 6-fold higher abundance of N(2)-fixing trees, 177% higher total tree basal area, 22% lower litter C/N, six-fold higher in situ soil resin-nitrate, and 40% lower in situ soil resin-P, compared to the diverse mixture. In the legume mixture, non-N(2)-fixing legume Schizolobium parahyba (Fabaceae-Caesalpinioideae) had significantly lower proportional N resorption, and both naturally regenerating non-legume trees had significantly higher leaf N concentrations, and higher proportional P resorption, than in the diverse mixture. This demonstrate forms of plastic adjustment in all three non-N(2)-fixing species to diverged nutrient relations between mixtures. By contrast, leaf nutrient relations in N(2)-fixing Enterolobium contortisiliquum (Fabaceae-Mimosoideae) did not respond to planting mixtures. Rapid N accumulation in the legume mixture caused excess soil nitrification over nitrate immobilization and tighter P recycling compared with the diverse mixture. The legume mixture succeeded in accelerating tree growth and canopy closure, but may imply periods of N losses and possibly P limitation. Incorporation of species with efficient nitrate uptake and P mobilization from resistant soil pools offers potential to optimize these tradeoffs.
Resumo:
Previous tests with essential oils from ripe chiropterochoric fruits suggested they can be used to attract and capture fruit-eating bats inside forest remnants. Here we evaluated the efficiency of these oils to attract frugivorous bats to open areas. We performed field tests with artificial fruits impregnated with essential oils of the genera Piper or Ficus that were attached to two groups of mist-nets set 50 m outside the border of a forest remnant. One group of artificial fruits received the corresponding oil isolated through hydrodistillation and the other received water only. Fruits with oils attracted significantly more fruit-eating bats, especially Artibeus lituratus that regularly crosses open habitats to reach other forest remnants. The highly significant attraction of A. lituratus by the oil of Piper was unexpected, since this bat is a specialist on Ficus fruits. We hypothesize that in habitats with no fruit available it is possible to attract frugivorous bats with the odor of several ripe fruit species. Furthermore, we verified that almost half of the individuals captured defecated seeds, indicating that the oils also attract recently fed bats, even when their preferred food is available nearby. This technique potentially may increase seed rain at specific locations, being particularly promising to restoration projects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied patterns in the use of space for foraging and roosting by two frugivorous bat species in a five-year-old restored Atlantic forest located in a fragmented landscape in southeastern Brazil. Ten individuals of Carollia perspicillata and eleven individuals of Artibeus lituratus were monitored through radio-telemetry in five sampling sessions. Each session lasted 3-8. days for each individual, with an average of 25.4 ± 10 locations for each C. perspicillata individual and 19 ± 4.4 for each A. lituratus individual. We described an average range of 124.4. ha and an average commuting distance of 1158.8. m for A. lituratus and an average range and commuting distance of 32. ha and 489. m, respectively, for C. perspicillata. We demonstrated a consistent pattern in habitat use and movements for both studied species, where they strictly used forests (restored or not) for day roosting, roosting in the foliage of trees located only in secondary forest remnants and restored areas, while restored areas were their main feeding habitat. We demonstrate that newly restored forests can be readily incorporated as foraging and roosting habitats by these species, and that C. perspicillata alters its roosting behavior in relation to preferred food availability. These results, when combined with data on the diet of the studied species, show consistent evidence of the potential that bats have to improve species diversity of anthropogenic plantings with their own natural seed dispersal. © 2012 Elsevier B.V.