904 resultados para Asymptotic tests
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.
Resumo:
This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
The main objective of this paper is to discuss maximum likelihood inference for the comparative structural calibration model (Barnett, in Biometrics 25:129-142, 1969), which is frequently used in the problem of assessing the relative calibrations and relative accuracies of a set of p instruments, each designed to measure the same characteristic on a common group of n experimental units. We consider asymptotic tests to answer the outlined questions. The methodology is applied to a real data set and a small simulation study is presented.
Resumo:
Although the area under the receiver operating characteristic (AUC) is the most popular measure of the performance of prediction models, it has limitations, especially when it is used to evaluate the added discrimination of a new biomarker in the model. Pencina et al. (2008) proposed two indices, the net reclassification improvement (NRI) and integrated discrimination improvement (IDI), to supplement the improvement in the AUC (IAUC). Their NRI and IDI are based on binary outcomes in case-control settings, which do not involve time-to-event outcome. However, many disease outcomes are time-dependent and the onset time can be censored. Measuring discrimination potential of a prognostic marker without considering time to event can lead to biased estimates. In this dissertation, we have extended the NRI and IDI to survival analysis settings and derived the corresponding sample estimators and asymptotic tests. Simulation studies were conducted to compare the performance of the time-dependent NRI and IDI with Pencina’s NRI and IDI. For illustration, we have applied the proposed method to a breast cancer study.^ Key words: Prognostic model, Discrimination, Time-dependent NRI and IDI ^
Resumo:
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).
Resumo:
We introduce several exact nonparametric tests for finite sample multivariatelinear regressions, and compare their powers. This fills an important gap inthe literature where the only known nonparametric tests are either asymptotic,or assume one covariate only.
Resumo:
Asymptotic chi-squared test statistics for testing the equality ofmoment vectors are developed. The test statistics proposed aregeneralizedWald test statistics that specialize for different settings by inserting andappropriate asymptotic variance matrix of sample moments. Scaled teststatisticsare also considered for dealing with situations of non-iid sampling. Thespecializationwill be carried out for testing the equality of multinomial populations, andtheequality of variance and correlation matrices for both normal andnon-normaldata. When testing the equality of correlation matrices, a scaled versionofthe normal theory chi-squared statistic is proven to be an asymptoticallyexactchi-squared statistic in the case of elliptical data.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
Dans ce texte, nous analysons les développements récents de l’économétrie à la lumière de la théorie des tests statistiques. Nous revoyons d’abord quelques principes fondamentaux de philosophie des sciences et de théorie statistique, en mettant l’accent sur la parcimonie et la falsifiabilité comme critères d’évaluation des modèles, sur le rôle de la théorie des tests comme formalisation du principe de falsification de modèles probabilistes, ainsi que sur la justification logique des notions de base de la théorie des tests (tel le niveau d’un test). Nous montrons ensuite que certaines des méthodes statistiques et économétriques les plus utilisées sont fondamentalement inappropriées pour les problèmes et modèles considérés, tandis que de nombreuses hypothèses, pour lesquelles des procédures de test sont communément proposées, ne sont en fait pas du tout testables. De telles situations conduisent à des problèmes statistiques mal posés. Nous analysons quelques cas particuliers de tels problèmes : (1) la construction d’intervalles de confiance dans le cadre de modèles structurels qui posent des problèmes d’identification; (2) la construction de tests pour des hypothèses non paramétriques, incluant la construction de procédures robustes à l’hétéroscédasticité, à la non-normalité ou à la spécification dynamique. Nous indiquons que ces difficultés proviennent souvent de l’ambition d’affaiblir les conditions de régularité nécessaires à toute analyse statistique ainsi que d’une utilisation inappropriée de résultats de théorie distributionnelle asymptotique. Enfin, nous soulignons l’importance de formuler des hypothèses et modèles testables, et de proposer des techniques économétriques dont les propriétés sont démontrables dans les échantillons finis.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.