892 resultados para Assortative mating
Resumo:
The ability of a population to shift from one adaptive peak to another was examined for a two-locus model with different degrees of assortative mating, selection, and linkage. As expected, if the proportion of the population that mates assortatively increases, so does its ability to shift to a new peak. Assortative mating affects this process by allowing the mean fitness of a population to increase monotonically as it passes through intermediate gene frequencies on the way to a new, higher, homozygotic peak. Similarly, if the height of the new peak increases or selection against intermediates becomes less severe, the population becomes more likely to shift to a new peak. Close linkage also helps the shift to a new adaptive peak and acts similarly to assortative mating, but it is not necessary for such a shift as was previously thought. When a population shifts to a new peak, the number of generations required is significantly less than that needed to return to the original peak when that happens. The short period of time required may be an explanation for rapid changes in the geological record. Under extremely high degrees of assortative mating, the shift takes longer, presumably because of the difficulty of breaking up less favored allelic combinations.
Resumo:
There have been numerous recent observations of changes in the behavior and dynamics of migratory bird populations, but the plasticity of the migratory trait and our inability to track small animals over large distances have hindered investigation of the mechanisms behind migratory change. We used habitat-specific stable isotope signatures to show that recently evolved allopatric wintering populations of European blackcaps Sylvia atricapilla pair assortatively on their sympatric breeding grounds. Birds wintering further north also produce larger clutches and fledge more young. These findings describe an important process in the evolution of migratory divides, new migration routes, and wintering quarters. Temporal segregation of breeding is a way in which subpopulations of vertebrates may become isolated in sympatry.
Resumo:
We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition. (C) 2009 Published by Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Research on the evolution of reproductive isolation in African cichlid fishes has largely focussed on the role of male colours and female mate choice. Here, we tested predictions from the hypothesis that allopatric divergence in male colour is associated with corresponding divergence in preference. Methods: We studied four populations of the Lake Malawi Pseudotropheus zebra complex. We predicted that more distantly-related populations that independently evolved similar colours would interbreed freely while more closely-related populations with different colours mate assortatively. We used microsatellite genotypes or mesh false-floors to assign paternity. Fisher's exact tests as well as Binomial and Wilcoxon tests were used to detect if mating departed from random expectations. Results: Surprisingly, laboratory mate choice experiments revealed significant assortative mating not only between population pairs with differently coloured males, but between population pairs with similarly-coloured males too. This suggested that assortative mating could be based on nonvisual cues, so we further examined the sensory basis of assortative mating between two populations with different male colour. Conducting trials under monochromatic (orange) light, intended to mask the distinctive male dorsal fin hues (blue v orange) of these populations, did not significantly affect the assortative mating by female P. emmiltos observed under control conditions. By contrast, assortative mating broke down when direct contact between female and male was prevented. Conclusion: We suggest that non-visual cues, such as olfactory signals, may play an important role in mate choice and behavioural isolation in these and perhaps other African cichlid fish. Future speciation models aimed at explaining African cichlid radiations may therefore consider incorporating such mating cues in mate choice scenarios.
Resumo:
The hypothesis of ecological divergence giving rise to premating isolation in the face of gene flow is controversial. However, this may be an important mechanism to explain the rapid multiplication of species during adaptive radiation following the colonization of a new environment when geographical barriers to gene flow are largely absent but underutilized niche space is abundant. Using cichlid fish, we tested the prediction of ecological speciation that the strength of premating isolation among species is predicted by phenotypic rather than genetic distance. We conducted mate choice experiments between three closely related, sympatric species of a recent radiation in Lake Mweru (Zambia/DRC) that differ in habitat use and phenotype, and a distantly related population from Lake Bangweulu that resembles one of the species in Lake Mweru. We found significant assortative mating among all closely related, sympatric species that differed phenotypically, but none between the distantly related allopatric populations of more similar phenotype. Phenotypic distance between species was a good predictor of the strength of premating isolation, suggesting that assortative mating can evolve rapidly in association with ecological divergence during adaptive radiation. Our data also reveals that distantly related allopatric populations that have not diverged phenotypically, may hybridize when coming into secondary contact, e.g. upon river capture because of diversion of drainage systems.
Resumo:
A critical step for speciation in the face of gene flow is the origination of reproductive isolation. The evolution of assortative mating greatly facilitates this process. Assortative mating can be mediated by one or multiple cues across an array of sensory modalities. We here explore possible cues that may underlie female mate choice in a sympatric species pair of cichlid fish from Lake Victoria, Pundamilia pundamilia and Pundamilia nyererei. Previous studies identified species-specific female preferences for male coloration, but effects of other cues could not be ruled out. Therefore, we assessed female choice in a series of experiments in which we manipulated visual (color) and chemical cues. We show that the visibility of differences in nuptial hue (i.e., either blue or red) between males of the 2 species is necessary and sufficient for assortative mating by female mate choice. Such assortment mediated by a single cue may evolve relatively quickly, but could make reproductive isolation vulnerable to environmental changes. These findings confirm the important role of female mate choice for male nuptial hue in promoting the explosive speciation of African haplochromine cichlids.
Resumo:
Background Non-random mating affects population variation for substance use and dependence. Developmentally, mate selection leading to positive spousal correlations for genetic similarity may result in increased risk for substance use and misuse in offspring. Mate selection varies by cohort and thus, assortative mating in one generation may produce marked changes in rates of substance use in the next. We aim to clarify the mechanisms contributing to spousal similarity for cigarette smoking and alcohol consumption. Methods Using data from female twins and their male spouses, we fit univariate and bivariate twin models to examine the contribution of primary assortative mating and reciprocal marital interaction to spousal resemblance for regular cigarette smoking and nicotine dependence, and for regular alcohol use and alcohol dependence. Results We found that assortative mating significantly influenced regular smoking, regular alcohol use, nicotine dependence and alcohol dependence. The bivariate models for cigarette smoking and alcohol consumption also highlighted the importance of primary assortative mating on all stages of cigarette smoking and alcohol consumption, with additional evidence for assortative mating across the two stages of alcohol consumption. Conclusions Women who regularly used, and subsequently were dependent on cigarettes or alcohol were more likely to marry men with similar behaviors. After mate selection had occurred, one partner's cigarette or alcohol involvement did not significantly modify the other partner's involvement with these psychoactive substances.
Resumo:
Laboratory-reared insects are widely known to have significantly reduced genetic diversity in comparison to wild populations; however, subtle behavioural changes between laboratory-adapted and wild or ‘wildish’ (i.e., within one or very few generations of field collected material) populations are less well understood. Quantifying alterations in behaviour, particularly sexual, in laboratory-adapted insects is important for mass-reared insects for use in pest management strategies, especially those that have a sterile insect technique component. We report subtle changes in sexual behaviour between ‘wildish’ Bactrocera dorsalis flies (F1 and F2) from central and southern Thailand and the same colonies 12 months later when at six generations from wild. Mating compatibility tests were undertaken under standardised semi-natural conditions, with number of homo/heterotypic couples and mating location in field cages analysed via compatibility indices. Central and southern populations of B. dorsalis displayed positive assortative mating in the 2010 trials but mated randomly in the 2011 trials. ‘Wildish’ southern Thailand males mated significantly earlier than central Thailand males in 2010; this difference was considerably reduced in 2011, yet homotypic couples from southern Thailand still formed significantly earlier than all other couple combinations. There was no significant difference in couple location in 2010; however, couple location significantly differed among pair types in 2011 with those involving southern Thailand females occurring significantly more often on the tree relative to those with central Thailand females. Relative participation also changed with time, with more southern Thailand females forming couples relative to central Thailand females in 2010; this difference was considerably decreased by 2011. These results reveal how subtle changes in sexual behaviour, as driven by laboratory rearing conditions, may significantly influence mating behaviour between laboratory-adapted and recently colonised tephritid fruit flies over a relatively short period of time.
Resumo:
We study the evolution of higher levels of dominance as a response to negative frequency-dependent selection. In contrast to previous studies, we focus on the effect of assortative mating on the evolution of dominance under frequency-dependent intraspecific competition. We analyze a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under a mixture of frequency-independent stabilizing selection, density-dependent selection, and frequency-dependent selection caused by intraspecific competition for a continuum of resources. The second (modifier) locus determines the degree of dominance at the trait level. Additionally, the population mates assortatively with respect to similarities in the ecological trait. Our analysis shows that the parameter region in which dominance can be established decreases if small levels of assortment are introduced. In addition, the degree of dominance that can be established also decreases. In contrast, if assortment is intermediate, sexual selection for extreme types can be established, which leads to evolution of higher levels of dominance than under random mating. For modifiers with large effects, intermediate levels of assortative mating are most favorable for the evolution of dominance. For large modifiers, the speed of fixation can even be higher for intermediate levels of assortative mating than for random mating.