860 resultados para Associative Algebras With Polynomial Identities
Resumo:
Partially supported by grant RFFI 98-01-01020.
Resumo:
This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.
Resumo:
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30
Resumo:
Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Let F be an algebraically closed field and let A and B be arbitrary finite dimensional simple algebras over F. We prove that A and B are isomorphic if and only if they satisfy the same identities.
Resumo:
∗The first author was partially supported by MURST of Italy; the second author was par- tially supported by RFFI grant 99-01-00233.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We simplify the results of Bremner and Hentzel [J. Algebra 231 (2000) 387-405] on polynomial identities of degree 9 in two variables satisfied by the ternary cyclic sum [a, b, c] abc + bca + cab in every totally associative ternary algebra. We also obtain new identities of degree 9 in three variables which do not follow from the identities in two variables. Our results depend on (i) the LLL algorithm for lattice basis reduction, and (ii) linearization operators in the group algebra of the symmetric group which permit efficient computation of the representation matrices for a non-linear identity. Our computational methods can be applied to polynomial identities for other algebraic structures.
Resumo:
In this paper we apply the method of functional identities to the study of group gradings by an abelian group G on simple Jordan algebras, under very mild restrictions on the grading group or the base field of coefficients.
Resumo:
The generation of models and counterexamples is an important form of reasoning. In this paper, we give a formal account of a system, called FALCON, for constructing finite algebras from given equational axioms. The abstract algorithms, as well as some implementation details and sample applications, are presented. The generation of finite models is viewed as a constraint satisfaction problem, with ground instances of the axioms as constraints. One feature of the system is that it employs a very simple technique, called the least number heuristic, to eliminate isomorphic (partial) models, thus reducing the size of the search space. The correctness of the heuristic is proved. Some experimental data are given to show the performance and applications of the system.
Resumo:
We prove an analogue of Magnus theorem for associative algebras without unity over arbitrary fields. Namely, if an algebra is given by $n+k$ generators and $k$ relations and has an $n$-element system of generators, then this algebra is a free algebra of rank $n$.
Resumo:
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.