925 resultados para Assemblage
Resumo:
Thirty-eight stations were sampled in Guanabara Bay, Rio de Janeiro, Brazil, to assess the spatio-temporal diversity and biomass of sublittoral polychaetes. Samples were collected during the dry (September 2000) and rainy season (May 2001) in shallow sublittoral sediments. The polychaete spatial composition showed a heterogeneous distribution throughout the bay. A negative gradient of diversity and biomass was observed towards the inner parts of the bay and sheltered areas. A wide azoic area was found inside the bay. Some high-biomass and low-diversity spots were found near a sewage-discharge point. In these areas, the polychaete biomass increased after the rainy season. A diversified polychaete community was identified around the bay mouth, with no dramatic changes of this pattern between the two sampling periods. Deposit-feeders were dominant in the entire study area. The relative importance of carnivores and omnivores increased towards the outer sector, at stations with coarse sediment fractions. Guanabara Bay can be divided into three main zones with respect to environmental conditions and polychaete diversity and biomass patterns: A) High polychaete diversity, hydrodynamically exposed areas composed of sandy, oxidized or moderately reduced sediments with normoxic conditions in the water column. B) Low diversity and high biomass of deposit and suspension-feeding polychaete species in the middle part of the bay near continental inflows, comprising stations sharing similar proportions of silt, clay and fine sands. C) Azoic area or an impoverished polychaete community in hydrodynamically low-energy areas of silt and clay with extremely reduced sediments, high total organic matter content and hypoxic conditions in the water column, located essentially from the mid-bay towards the north sector. High total organic matter content and hypoxic conditions combined with slow water renewal in the inner bay seemed to play a key role in the polychaete diversity and biomass. Sedimentation processes and organic load coming from untreated sewage into the bay may have negatively affected the survivorship of the fauna.
Resumo:
Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.
Resumo:
We investigated two of the most studied relationships in the macroecological research program (species richness vs. body size and abundance vs. body size) of a local chironomid assemblage from southeastern Brazil. Although numerous Studies have examined these relationships, few have investigated how they vary at different temporal scales. We used data from a forested stream to document and examine these patterns at monthly intervals. Both the species body size distribution and the abundance-body size relationship varied temporally. In some months the body size distribution was skewed to the right. whereas in others it approached normality. We Found both linear relationships (with different values of slopes). and a polygonal pattern in the abundance-body size relationship. This temporal variation was not related to environmental variables. Our results suggest that body size relationships are temporally instable properties of this chironomid assemblage. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.
Resumo:
Fish assemblage composition and seasonal patterns of species abundance were studied in Cabaceiras stream, a tributary of the Mogi Guaçu river in São Paulo State, Brazil. Three stations were sampled monthly from June 1999 to May 2000 using sieves and small trawl net and gill nets. Fifteen fish families, 37 genera and 45 species were captured. Characiformes (27 spp.) and Siluriformes (13 spp.) were the most species-rich orders. Gymnotiformes and Perciformes were represented by two species each, and Synbranchiformes had only a single species. One group of species (approximately 75 %) persisted in the stream throughout the year. A second group (approximately 25 %) contained species that only occupy the stream for a limited period of their life cycle, and overall fish assemblage composition was associated with the seasonal flood cycle.
Resumo:
The objective of this study was to identify the patterns of seasonal and diel variation and the most important abiotic factors that influence variation in the fish assemblage of the Delta of the Jacuí River in southern Brazil. Seventy-two samples were collected over a one year period. Water temperature was the abiotic factor with the greatest influence on the distribution of the assemblage. The structure of the assemblage exhibited significant changes in terms of species abundance and biomass during the year, with the greatest abundance and biomass being observed during the autumn. There was no significant difference between day and night in terms of abundance, but biomass was significantly greater during the night than during the day.
Resumo:
Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.
Resumo:
Reproductive modes and size-fecundity relationships are described for anurans from Picinguaba, a region of Atlantic rainforest on the northern coast of the state of São Paulo, Brazil. We observed 13 reproductive modes, confirming a high diversity of modes in the Atlantic rainforest. This diversity of reproductive modes reflects the successful use of diversified and humid microhabitats by anurans in this biome. We measured the snout-vent length of 715 specimens of 40 species of anurans. The size-fecundity relationship of 12 species was analyzed. Female snout-vent lengths explained between 57% and 81% of clutch size variation. Anurans with aquatic modes laid more eggs than those with terrestrial or arboreal modes. Larger eggs were deposited by species with specialized reproductive modes.
Resumo:
A two-year study was carried out to evaluate the composition, abundance and species richness of Miridae from Parque Estadual do Turvo, municipality of Derrubadas, state of Rio Grande do Sul, Brazil. Samplings were made in the springs of 2003 and 2004 (October), and autumns of 2004 and 2005 (May), using a beating tray method, along two trails of the park. Sampling effort (hours x collectors) in the quantitative collections totaled 153 hours. Two-hundred mirid specimens of 50 species were collected. The most abundant mirid was Prepops setosipes (Reuter, 1910), representing 23% of the collected individuals, followed by Collaria capixaba Carvalho & Fontes, 1981 (10.5%) and Tropidosteptes cribratus (Stål, 1860) (7%), the latter recorded in all sampling periods. The highest abundance was observed in the springs of 2003 and 2004, with 53 and 78 individuals, respectively. Rarefaction method showed that estimated species richness was higher in autumn/2004 than in the other sampling periods, and higher along Yucumã than in Garcia trail. Besides a higher species richeness, Yucumã had more exclusive species than Garcia trail. The percent of species represented by one or two specimens in quantitative samplings (singletons and doubletons) was 60%. Additional samplings including hand collection, random beating tray and light trap collections added 20 species not recorded in the quantitative samplings.
Resumo:
ABSTRACT This study investigated the assemblages attributes (composition, abundance, richness, diversity and evenness) and the most representative genera of Odonata, Anisoptera at Água Boa and Perobão Streams, Iguatemi River basin, Brazil. Both are first order streams with similar length that are impacted by riparian forest removal and silting. Quarterly samplings were conducted from March to December 2008 in the upper, intermediate and lower stretch of each stream. The Mantel test was used to check the influence of spatial autocorrelation on the Odonata composition. Spatial variations in the composition were summarized by the Principal Coordinates Analysis (PCoA) using Mantel test residuals. The effects of spatial correlation on richness and abundance were investigated by the spatial correlogram of Moranʼs I coefficients. The most representative genera in each stream were identified by the Indicator Value Method. The spatial variations in the attributes of the assemblages were assessed using analysis of variance of null models. We collected 500 immature individuals of 23 genera and three families. Among the attributes analyzed only the composition and abundance showed significant spatial differences, with the highest mean abundance found in the Perobão Stream. Miathyria and Zenithoptera were the indicator genera of the Água Boa Stream and Erythrodiplax, Libellula, Macrothemis, Progomphus and Tramea were the indicator genera of the Perobão Stream.
Resumo:
The Raspas Complex (Ecuador) contains one of the few eclogitic bodies in the northern Andes. It consists of metaperidotites, eclogites, and metapelites. The latter display three assemblages: (i) garnet + chloritoid + kyanite, (ii) garnet + chloritoid and (iii) garnet + chlorite, in all cases with quartz and muscovite in addition. The growth of these assemblages was coeval with the main ductile deformation, and was followed by minor reequilibration (chlorite growth in garnet + chloritoid samples and chloritoid + quartz aggregates replacing garnet and kyanite in garnet + chloritoid + kyanite samples). Detailed microprobe analyses show increasing magnesian compositions for garnet (from core to rim) and chloritoid (inclusions within garnet compared to matrix grains) in kyanite-bearing samples. The above data are interpreted in the framework of the KFMASH system. Reaction progress along the divariant reaction Cld = Grt + Ky explains the change in chemistry of coexisting phases. The divariant Grt-Cld-Ky assemblage has a narrow stability field, and the P-T conditions are estimated at about 20 kbar, 550-600degreesC. Decompression, recorded by chloritoid-quartz pseudomorphs of garnet, probably occurred as temperature decreased.
Resumo:
What is the importance of open habitat in a predominantly closed forest to the dung beetle assemblage? The Atlantic Forest in Brazil is one of the most highly disturbed ecosystems and is mainly represented by fragmented areas. However, in places where human disturbances have ceased, certain areas are showing a natural regeneration pattern. The aim of the present study was to determine how the dung beetle assemblage responds to distinct habitat structures in a fragment of Atlantic Forest. For such, open and closed forest areas were sampled in a fragment of the Atlantic Forest in the northeastern region of Brazil. Pitfall traps baited with excrement and carrion were used to collect the beetles. A total of 7,267 individuals belonging to 35 species were captured. Canthon chalybaeus and C. mutabilis were restricted to open areas. Nearly 90% of the individuals of C. aff. simulans and Deltochilum aff. irroratum were identified in these areas. A higher percentage (> 50%) of Canthon staigi, Dichotomius aff. depressicolis and D. aff. sericeus occurred in closed areas. Abundance differed between areas, with higher values in closed areas. Richness was not influenced by the habitat structure. NMDS ordination exhibited the segregation of areas and ANOSIM confirmed that this variable explained the assemblage of dung beetle species. The findings of the present study validate that open areas are associated to more restrictive conditions, limiting a higher abundance of dung beetle. Although situated near preserved fragments, the studied open areas increase the heterogeneity of the general landscape.
Resumo:
Human activities in tropical forests are the main causes of forest fragmentation. According to historical factor in deforestation processes, forest remnants exhibit different sizes and shapes. The aim of the present study was to evaluate the dung beetle assemblage on fragments of different degree of sizes. Sampling was performed during rainy and dry season of 2010 in six fragments of Atlantic forest, using pitfall traps baited with excrement and carrion. Also, we used two larger fragments as control. We used General Linear Models to determine whether the fragments presented distinguished dung beetle abundance and richness. Analysis of Similarities and Non-Metric Multidimensional Scaling were used to determine whether the dung beetle assemblage was grouped according to species composition. A total of 3352 individuals were collected and 19 species were identified in the six fragments sampled. Dung beetle abundance exhibited a shift according to fragment size; however, richness did not change among fragments evaluated. Also, fragments sampled and the two controls exhibited distinct species composition. The distinction on abundance of dung beetles among fragments may be related to different amount of resource available in each one. It is likely that the dung beetle richness did not distinguish among the different fragments due to the even distribution of the mammal communities in these patches, and consequent equal dung diversity. We conclude that larger fragments encompass higher abundance of dung beetle and distinct species. However, for a clearer understanding of effects of fragmentation on dung beetles in Atlantic forest, studies evaluating narrower variations of larger fragments should be conducted.
Resumo:
ABSTRACTAssessments in agricultural crops indicate that alterations in the landscape adjacent to the crops can result in reduced productivity due to loss or low abundance of pollinating agents. In the canola crop, production is partially dependent on insect pollination. Therefore, knowledge of the faunal diversity within and near crop fields is key for the management of these insects and consequently for the increase in productivity. This study aimed to determine and compare the diversity of bees in habitats associated with canola fields in southern Brazil. Bees were captured in four agricultural areas using pan traps in three habitat classes: (1) flowering canola crop, (2) forest remnant, and (3) grassland vegetation. The highest abundance of bees was observed in the grassland vegetation (50%) and in the flowering canola field (47%). Eight species common to the three habitat classes were recorded, four of which are represented by native social bees. In addition, a single or a few individuals represented species that were exclusive to a specific habitat class; eight species were collected exclusively in the interior of the canola field, 51 in the grassland vegetation, and six in the forest remnant. The majority of the rare species recorded exhibits subsocial or solitary behaviour and inhabit open places. The composition of bee groups differed between the habitats showing the importance of maintaining habitat mosaics with friendly areas for pollinators, which promote the pollination service for canola flowers.
Resumo:
Aim Conservation strategies are in need of predictions that capture spatial community composition and structure. Currently, the methods used to generate these predictions generally focus on deterministic processes and omit important stochastic processes and other unexplained variation in model outputs. Here we test a novel approach of community models that accounts for this variation and determine how well it reproduces observed properties of alpine butterfly communities. Location The western Swiss Alps. Methods We propose a new approach to process probabilistic predictions derived from stacked species distribution models (S-SDMs) in order to predict and assess the uncertainty in the predictions of community properties. We test the utility of our novel approach against a traditional threshold-based approach. We used mountain butterfly communities spanning a large elevation gradient as a case study and evaluated the ability of our approach to model species richness and phylogenetic diversity of communities. Results S-SDMs reproduced the observed decrease in phylogenetic diversity and species richness with elevation, syndromes of environmental filtering. The prediction accuracy of community properties vary along environmental gradient: variability in predictions of species richness was higher at low elevation, while it was lower for phylogenetic diversity. Our approach allowed mapping the variability in species richness and phylogenetic diversity projections. Main conclusion Using our probabilistic approach to process species distribution models outputs to reconstruct communities furnishes an improved picture of the range of possible assemblage realisations under similar environmental conditions given stochastic processes and help inform manager of the uncertainty in the modelling results
Resumo:
Aim: Climatic niche modelling of species and community distributions implicitly assumes strong and constant climatic determinism across geographic space. This assumption had however never been tested so far. We tested it by assessing how stacked-species distribution models (S-SDMs) perform for predicting plant species assemblages along elevation. Location: Western Swiss Alps. Methods: Using robust presence-absence data, we first assessed the ability of topo-climatic S-SDMs to predict plant assemblages in a study area encompassing a 2800 m wide elevation gradient. We then assessed the relationships among several evaluation metrics and trait-based tests of community assembly rules. Results: The standard errors of individual SDMs decreased significantly towards higher elevations. Overall, the S-SDM overpredicted far more than they underpredicted richness and could not reproduce the humpback curve along elevation. Overprediction was greater at low and mid-range elevations in absolute values but greater at high elevations when standardised by the actual richness. Looking at species composition, the evaluation metrics accounting for both the presence and absence of species (overall prediction success and kappa) or focusing on correctly predicted absences (specificity) increased with increasing elevation, while the metrics focusing on correctly predicted presences (Jaccard index and sensitivity) decreased. The best overall evaluation - as driven by specificity - occurred at high elevation where species assemblages were shown to be under significant environmental filtering of small plants. In contrast, the decreased overall accuracy in the lowlands was associated with functional patterns representing any type of assembly rule (environmental filtering, limiting similarity or null assembly). Main Conclusions: Our study reveals interesting patterns of change in S-SDM errors with changes in assembly rules along elevation. Yet, significant levels of assemblage prediction errors occurred throughout the gradient, calling for further improvement of SDMs, e.g., by adding key environmental filters that act at fine scales and developing approaches to account for variations in the influence of predictors along environmental gradients.