451 resultados para Asphaltic sandstones
Resumo:
We report the detection of living colonies of nano-organisms (nanobes) on Triassic and Jurassic sandstones and other substrates. Nanobes have cellular structures that are strikingly similar in morphology to Actinomycetes and fungi (spores, filaments, and fruiting bodies) with the exception that they are up to 10 times smaller in diameter (20 nm to 1.0 mu m). Nanobes are noncrystalline structures that are composed of C, O, and N. Ultra thin sections of nanobes show the existence of an outer layer or membrane that may represent a cell wall. This outer layer surrounds an electron dense region interpreted to be the cytoplasm and a less electron dense central region that may represent a nuclear area. Nanobes show a positive reaction to three DNA stains, [4',6-diamidino-2 phenylindole (DAPI), Acridine Orange, and Feulgen], which strongly suggests that nanobes contain DNA. Nanobes are communicable and grow in aerobic conditions at atmospheric pressure and ambient temperatures. While morphologically distinct, nanobes are in the same size range as the controversial fossil nannobacteria described by others in various rock types and in the Martian meteorite ALH84001.
Resumo:
This report describes a laboratory evaluation of three asphaltic concrete, plant produced mixtures containing Asphadur. The mixtures represent a type A asphaltic concrete and two type B asphaltic concretes. The type A and one of the type B mixtures were used in pavements and will be evaluated later for durability and serviceability. The second type B mixture was made only for laboratory testing. In each instance, control batches of the same mixtures but without Asphadur were made for comparison. Type A is a high type asphaltic concrete, requires a minimum of 65 percent crushed particles and is generally used for higher traffic volume roads. Type B is used for intermediate or lower traffic volumes and requires a minimum of 30 percent crushed particles.
Resumo:
This study was designed to provide background information on asphaltic concrete mixtures peculiar to northwest Iowa. This background is necessary to provide the basis for future specifications. There were several projects let in 1967 involving l", 3/4" and 3/8" mixes of Type "B'' asphaltic concrete which specified in part, II Not less than 40% of the material passing the No. 200 sieve shall be pulverized limestone or mineral filler, but in no case shall the per cent of pulverized limestone or mineral filler passing the No. 200 sieve be less than 2%. No credit will be allowed for limestone in gravel - II Northwest Iowa has no suitable limestone or mineral filler locally available. As a result, this material has to be imported, raising the cost of the mix approximately twenty-five cents per ton. The purpose of this study, therefore, was designed to compare some original job mix samples with alternate mixes from the same local material, but without the addition of pulverized limestone or mineral filler. Since the filler from the crushed gravel does not have the same crushing characteristics or sieve analysis as the pulverized limestone or mineral filler, they could not be compared on an equal percentage basis. Therefore, the alternate mixes were made to conform to the following proposed specification, "No less than 40% of the material passing No. 200 sieve shall be pulverized limestone or mineral filler or a 100% crushed gravel, but in no case shall the per cent of pulverized limestone or mineral filler or a 100% crushed gravel passing the No. 200 sieve be less than 2%."
Resumo:
The amount of asphalt cement in asphaltic concrete has a definite effect on its durability under adverse conditions. The expansion of the transportation system to more and heavier loads has also made the percentage of asphalt cement in a mix more critical. The laboratory mixer does not duplicate the mixing effect of the large pugmills; therefore, it is impossible to be completely sure of the asphalt cement needed for each mix. This percentage quite often must be varied in the field. With a central testing laboratory and the high production of mixing plants today, a large amount of asphaltic concrete is produced before a sample can be tested to determine if the asphalt content is correct. If the asphalt content lowers the durability or stability of a mix, more maintenance will be required in the future. The purpose of this project is to determine the value of a mobile laboratory in the field, the feasibility of providing adequate, early testing in the field, and correlation with the central laboratory. The major purpose was to determine as soon as possible the best percentage of asphalt.
Resumo:
Project 540-S of the Iowa Engineering Experiment Station (Project HR-107, Iowa Highway Research Board) was started in June, 1964. During the year ten 2-gallon samples of asphalt cement and ten 100-lb samples of asphaltic concrete were studied by the personnel of the Bituminous Research Laboratory, Iowa State University. The samples were from tanks and mixers of asphalt plants at various Iowa State Highway Commission paving jobs. The laboratory's research was in two phases: 1. To ascertain if properties of asphalt cement changed during mixing operations. 2. To determine whether one or more of the several tests of asphalt cements were enough to indicate behavior of the heated asphalt cements. If the reliability of one or more tests could be proved, the behavior of asphalts would be more simply and rapidly predicted.
Resumo:
There is a wide range of evidence to suggest that permeability can be constrained through of induced polarization measurements. For clean sands and sandstones, current mechanistic models of induced polarization predict a relationship between the low-frequency time constant inferred from induced polarization measurements and the grain diameter. A number of observations do, however, disagree with this and indicate that the observed relaxation behavior is rather governed by the so-called dynamic pore radius L. To test this hypothesis, we have developed a set of new scaling relationships, which allow the relaxation time to be computed from the pore size and the permeability to be computed from both the Cole-Cole time constant and the formation factor. Moreover, these new scaling relationships can be also used to predict the dependence of the Cole-Cole time constant as a function of the water saturation under unsaturated conditions. Comparative tests of the proposed new relationships with regard to various published experimental results for saturated clean sands and sandstones as well as for partially saturated clean sandstones, do indeed confirm that the dynamic pore radius L is a much more reliable indicator of the observed relaxation behavior than grain-size-based models.
Resumo:
The Standard Specifications for this project included requirements for placing two 500 foot test sections of Type B asphaltic concrete with 1-1/2 per cent asbestos fibres (mix size 3/8 inch, lift thickness 3/4 inch) as part of the regular construction of the surface course. These requirements were designed to provide asbestos modified mixtures for laboratory analysis and road performance evaluation. This report provides the preliminary results and analysis of test data obtained from tests on the mixtures placed on the roadway. Previous research by G. S. Zuelke (1) and J. H. Kestzman et al (2) indicated that asphaltic concrete mixtures modified with asbestos fibres improved stability, decreased permeability, and allowed the use of higher bitumen contents. This study indicated that the addition of asbestos fibres would permit the use of higher bitumen contents, theoretically improving durability, without adverse results. An indication was also obtained to the effect that asbestos mixtures were more difficult to compact in the field.
Resumo:
When mixing asphalt in thin film and at high temperatures, as in the production of asphalt concrete, it has been shown that asphalt will harden due essentially to two factors: (1) losses of volatiles and (2) oxidation. The degree of hardening as expressed by percent loss in penetration varied from as low as 7% to about 57% depending on mixing temperatures, aggregate types, gradation, asphalt content, penetration and other characteristics of asphalts used. Methods used to predict hardening during mixing include loss on heat and thin film oven tests, with the latter showing better correlation with the field findings. However, information on other physical and chemical changes that may occur as a result of mixing in the production of hot-mix asphaltic concrete is limited, The purpose of this research project was to ascertain the changes of asphalt cement properties, both physical and chemical, during mixing operation and to determine whether one or more of the several tests of asphalt cements were critical enough to indicate these changes.
Resumo:
In some asphaltic concrete mixes asphalt absorption in field mixes is difficult to predict by the routine mix design tests presently being used. Latent or slow absorption in hot mixes is hard to compensate for in field control due to aggregate gradations being near maximum density. If critical asphalt need could be changed by increasing voids in the mineral aggregate so that more freedom could be exercised in compensating for the absorption, this may aid in design. The voids in the mineral aggregate can be related to composite gradation of total aggregate in a mixture, i.e. if a composite gradation of aggregate is finer than that of maximum density curve, the V.M.A. will be greater than that of a mix of maximum density. The typical gradation of Iowa Type 'A' mixes is finer than a gradation which is near the centerline of the specification at sieves larger than the No. 30 and coarser at the lower sieve sizes. The mixes of the typical gradation will have higher V.M.A. than those of the near centerline mixes. By studying properties of the mixes of the typical gradation and comparing them with those of the mixes of maximum density, it may aid in the modification and simplification of our present testing methods and specification requirements while still maintaining control of quality of the mix by controlling voids, stability, gradation and asphalt content.
Resumo:
Seven asphaltic concrete resurfacing projects were tested for their frictional properties to determine the age-friction relationship of new paving. Projects studied included Type A asphaltic concrete which is generally used for higher traffic volume roads and Type B asphaltic concrete, a lower type material. Also included in the study were asphaltic concretes containing Type 3 and Type 4 coarse aggregate texture classifications. The classifications are based upon material type and grain size composition. Surfaces both with and without sprinkle treatment aggregates were also included. The data gathered suggests that properly designed and placed dense graded asphaltic concrete mixes are adequate to serve the traveling public at all ages tested.
Resumo:
The Iowa D.O.T. specifications do not require 100 percent of 50 blow Marshall density (generally 94%) for field compaction. However, stabilities are determined in the Laboratory on specimens compacted to 100 percent of Marshall density. The purpose of this study is to determine the stabilities of specimens compacted to various densities which are below 100 percent of the 50 blow Marshall density.
Resumo:
It has been observed in the Laboratory that an increase in oven heating time of relatively short duration between mixing and compaction of asphaltic concrete hot mixes can have an effect on the Marshall stability results obtained. The purpose of this short investigation is to determine the effect of oven heating time on the density and stability of hot mixes.
Resumo:
The 1982 cost of a two-inch asphaltic concrete overlay, with fabric, was an average of 85% of the cost of a three-inch overlay (see attached calculations). A structural number can be assigned to the extra inch of overlay, whereas it is doubtful that any number can be assigned to the fabric. The observations made on the projects in this report leave little reason to be optimistic on the use of fabrics under asphalt overlays. This is especially true of the Floyd, Dallas and Clarke county projects. A great amount of fabric is being used nationwide for this purpose, probably more from sales promotion than from actual documented performance. Full scale field testing is continuing each time a project is let utilizing fabric reinforcement under asphaltic concrete overlays. It has already become apparent that the use of fabrics in AC overlays is not always cost effective.