217 resultados para Ascorbate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human skin fibroblasts were cultured long-term in the presence of ascorbic acid to allow formation of a three-dimensional collagen matrix, and the effects of this on activation of secreted matrix metalloproteinase-2 (MMP-2) were examined. Accumulation of collagen over time correlated with increased levels of both mature MMP-2 and cell-associated membrane type 1-MMP (MT1-MMP), and subsequently increased mRNA levels for MT1-MMP, providing temporal resolution of the "nontranscriptional" and "transcriptional" effects of collagen on MT-1MMP functionality. MMP-2 activation by these cultures was blocked by inhibitors of prolyl-4-hydroxylase, or when fibroblasts derived from the collagen α1(I) gene-deficient Mov-13 mouse were used. MMP-2 activation by the Mov-13 fibroblasts was rescued by transfection of a full-length α1(I) collagen cDNA, and to our surprise, also by transfection with an α1(I) collagen cDNA carrying a mutation at the C-proteinase cleavage, which almost abrogated fibrillogenesis. Although studies with ascorbate-cultured MT1-MMP-/- fibroblasts showed that MT1-MMP played a significant role in the collagen-induced MMP-2 activation, a residual MT1-MMP-independent activation of MMP-2 was seen which resembled the level of MMP-2 activation persisting when wild-type fibroblasts were cultured in the presence of both ascorbic acid and MMP inhibitors. We were also unable to block this residual activation with inhibitors specific for serinyl, aspartyl, or cysteinyl enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-Arginine ascorbate, C6HIsN40+.C6H706, a 1"1 crystalline complex between the amino acid arginineand the vitamin ascorbic acid, crystallizes in the monoclinic space group P21 with two formula units in a cell of dimensions a = 5.060 (8), b = 9.977 (9), c = 15.330 (13) A, fl = 97.5 (2) °. The structure was solved by the symbolic addition procedure and refined to an R of 0.067 for 1501 photographically observed reflec- tions. The conformation of the arginine molecule in the structure is different from any observed so far. The present structure provides the first description of the ascorbate anion unaffected by the geometrical constraints and disturbances imposed by the requirements of metal coordination. The lactone group and the deprotonated enediol group in the anion are planar and the side chain assumes a conformation which appears to be sterically the most favourable. In the crystals, the arginine molecules and the ascorbate anions aggregate separately into alternating layers. The molecules in the arginine layer are held together by interactions involving a-amino and ~t-carboxylate groups, a situation analogous to that found in proteins. The two layers of unlike molecules are interconnected primarily through the interactions of the side-chain guanidyl group of arginine with the ascorbate ion. These involve a specific ion-pair interaction accompanied by two convergent hydrogen bonds and another pair of nearly parallel hydrogen bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress due to excessive accumulation of reactive oxygen or nitrogen species in the brain as seen in certain neurodegenerative diseases can have deleterious effects on neurons. Hydrogen peroxide, endogenously generated in neurons under normal physiological conditions, can produce an excess of hydroxyl radical via a Fenton mediated mechanism. This may induce acute oxidative injury if not scavenged or removed effectively by antioxidants. There are several biochemical assay methods to estimate oxidative injury in cells; however, they do not provide information on the biochemical changes as the cells get damaged progressively under oxidative stress. Raman microspectroscopy offers the possibility of real time monitoring of the chemical composition of live cells undergoing oxidative stress under physiological conditions. In the present study, a hippocampal neuron coculture was used to observe the acute impact of hydroxyl radicals generated by hydrogen peroxide in the presence of Fe2+ (Fenton reaction). Raman peaks related to nucleic acids (725, 782, 1092, 1320, 1340, 1420, and 1576 cm(-1)) showed time-dependent changes over the experimental period (60 mm), indicating the breakdown of the phosphodiester backbone as well as nuclear bases. Interestingly, ascorbic acid (a potent antioxidant) when cotreated with Fenton reactants showed protection of cells as inferred from the Raman spectra, presumably by scavenging hydroxyl radicals. Little or no change in the Raman spectra was observed for untreated control cells and for cells exposed to Fe2+ only, H2O2 only, and ascorbate only. A live dead assay study also supported the current observations. Hence, Raman microspectroscopy has the potential to be an excellent noninvasive tool for early detection of oxidative stress that is seen in neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. Methods: All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped a-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA1c 7.9±1%, n=12) and healthy controls (HbA1c 4.6±0.5%, n=14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Resuts: Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n=12) exhibited an elevated concentration of PBN adducts (p<0.05 vs healthy, n=14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO•) radicals (a nitrogen=1.37 mT and aßhydrogen=0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p<0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p<0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p<0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. Conclusions/ interpretation: These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis of macrophages and smooth muscle cells is observed in atherosclerotic lesions and may play an important role in the disease progression. Oxidised low density lipoprotein (LDL) is cytotoxic and induces apoptosis in a variety of cell types. We reported previously that ascorbate protects arterial smooth muscle cells from apoptosis induced by oxidised LDL containing the peak levels of lipid hydroperoxides. We now demonstrate that macrophages undergo apoptosis when treated with this species of oxidised LDL, as detected by increased annexin V binding and DNA fragmentation. Ascorbate treatment of macrophages did not protect against the cytotoxicity of oxidised LDL, and modestly increased the levels of annexin V binding and DNA fragmentation. Oxidised LDL treatment also increased the expression of the antioxidant stress protein heme oxygenase-1 in macrophages; however, this increase was markedly attenuated by ascorbate pretreatment. Although apoptosis induced by oxidised LDL was modestly promoted by ascorbate, ascorbate apparently decreased the levels of oxidative stress in macrophages, suggesting that this pro-apoptotic effect was not mediated by a pro-oxidant mechanism, but may instead have been due to intracellular protection of the apoptotic machinery by ascorbate. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.