1000 resultados para Asclepias-syriaca-l
Resumo:
P>1. Entomopathogenic nematodes can function as indirect defence for plants that are attacked by root herbivores. By releasing volatile organic compounds (VOCs), plants signal the presence of host insects and thereby attract nematodes.2. Nonetheless, how roots deploy indirect defences, how indirect defences relate to direct defences, and the ecological consequences of root defence allocation for herbivores and plant biomass are essentially unknown.3. We investigate a natural below-ground tritrophic system, involving common milkweed, a specialist root-boring beetle and entomopathogenic nematodes, and asked whether there is a negative genetic correlation between direct defences (root cardenolides) and indirect defences (emission of volatiles in the roots and nematode attraction), and between constitutive and inducible defences.4. Volatiles of roots were analysed using two distinct sampling methods. First, we collected emissions from living Asclepias syriaca roots by dynamic headspace sampling. This method showed that attacked A. syriaca plants emit five times higher levels of volatiles than control plants. Secondly, we used a solid phase micro-extraction (SPME) method to sample the full pool of volatiles in roots for genetic correlations of volatile biosynthesis.5. Field experiments showed that entomopathogenic nematodes prevent the loss of biomass to root herbivory. Additionally, suppression of root herbivores was mediated directly by cardenolides and indirectly by the attraction of nematodes. Genetic families of plants with high cardenolides benefited less from nematodes compared to low-cardenolide families, suggesting that direct and indirect defences may be redundant. Although constitutive and induced root defences traded off within each strategy (for both direct and indirect defence, cardenolides and VOCs, respectively), we found no trade-off between the two strategies.6. Synthesis. Constitutive expression and inducibility of defences may trade off because of resource limitation or because they are redundant. Direct and indirect defences do not trade off, likely because they may not share a limiting resource and because independently they may promote defence across the patchiness of herbivore attack and nematode presence in the field. Indeed, some redundancy in strategies may be necessary to increase effective defence, but for each strategy, an economy of deployment reduces overall costs.
Resumo:
Invocatio: M.G.H.
Resumo:
First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species and was related to the amount of latex produced. The outcome also may be related to the amount of cardenolide produced by the plants as a potential chemical defense against herbivory. Growth was more rapid, but survival was similar on partially severed compared with intact leaves of the high-latex/low-cardenolide milkweed, Asclepias syriaca, whereas both growth and survival were unaffected on the low-latex/low-cardenolide milkweed A. incarnata. On the low-latex/low-cardenolide milkweed A. tuberosa, both growth and survival of larvae were only marginally affected. These results contrast sharply to previous results with the milkweed, A. humistrata, in Florida, which has both high latex and high cardenolide. Larval growth and survival on A. humistrata were both increased by partially severing leaf petioles. Larval growth rates among all four milkweed species on leaves with partially severed petioles were identical, suggesting that latex and possibly the included cardenolides are important in first-instar monarch larval growth, development, and survivorship.
Resumo:
The goal of this paper was to test the presence of mimicry in Asclepias curassavica L., Epidendrum fulgens Brong., and Lantana camara L. The study was carried out at the Parque Estadual de Itapeva, RS, southern Brazil, from 2004 to 2006. Flowering period of each of the three species was followed up; focal observations of butterflies visiting flowers, from fixed point and during random walks were carried out. We also estimated the frequency of pollinaria removal in the orchid, as well as its mode of reproduction. All these variables were important for testing the mimicry hypothesis. Despite some temporal coincidences in the flowering period of two plants in the system, there was no statistical association among the three plants as to flowering period. Twenty-nine species of butterflies, as potential pollinators, were recorded, particularly Agraulis vanillae maculosa, Dryas iulia alcionea, Urbanus simplicius, Tegosa claudina, and Heliconius erato phyllis, which were the more frequent visitors of the three plants. There was association between the number of visits to L. camara and E. fulgens, based on Pearson correlation (r = 0.4603; n = 19; P = 0.0473). Pollinaria removal of E. fulgens was low, as measured by the percentage of removal (range: 0 - 10%). The analysis of the mode of reproduction of this orchid showed its pollinator-dependence, since no fruits were formed by spontaneous self-pollination. In contrast, the percentage of fruit set that resulted from geitonogamy and xenogamy was, in average, 86%. The results here shown are not conclusive as to the occurrence of a mimicry system among the three plants.
Resumo:
Exposem un recull de les dades florístiques més interessants de les comarques catalanes al sud de l'Ebre. La majoria d'elles representen novetat per a la flora del migjorn de Cataluña. Erodium foetidum (L. & Nath.) L'Hér subsp. valentinum (Lange in Willk. & Lange) 0. de Bolòs & Vigo, Zigophyllum fabago L., Notobasis syriaca (L.) Cass. i Milium vernale Bieb., es citen per primera vegada al Principat.
Resumo:
Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.
Resumo:
Laticíferos ocorrem em todos os representantes de Apocynaceae e são considerados não articulados ramificados pela maioria dos autores; entretanto, laticíferos articulados têm sido descritos para algumas espécies da família. O presente trabalho tem por objetivo descrever a ontogênese, estrutura, distribuição e o tipo dos laticíferos em órgãos vegetativos de Fischeria stellata (Vell.) E.Fourn., Gonioanthela axillaris (Vell.) Fontella & E.A. Schwarz, Matelea denticulata (Vahl) Fontella & E.A. Schwarz e Oxypetalum banksii Schult. e reavaliar os laticíferos de Asclepias curassavica L. de mata atlântica, comparando os resultados aos de espécies de cerrado. Os laticíferos das cinco espécies são articulados anastomosados, cujas paredes transversais ou oblíquas são dissolvidas rápida e integralmente. Os laticíferos ramificam-se através de anastomose lateral e formam um sistema contínuo por todos os órgãos da planta adulta. Eles são observados em todos os tecidos primários do caule e da folha, excetuando-se a epiderme, e no tecido vascular secundário, exceto no xilema secundário de A. curassavica. A ontogênese destes laticíferos pode explicar a divergência entre os nossos dados e aqueles publicados para a grande maioria das espécies desta família. Os resultados obtidos evidenciam que a ontogênese, estrutura e distribuição dos laticíferos das espécies de Asclepiadeae de floresta de restinga, floresta ombrófila densa de terras baixas e cerrado são semelhantes. A continuidade do sistema laticífero articulado anastomosado permite um maior afluxo de látex ao local injuriado, pois o conteúdo das regiões interconectadas é liberado simultaneamente, coagulando e selando os ferimentos rapidamente, além de impedir a entrada de microorganismos.
Resumo:
No presente trabalho, foram estudados os polinários de nove gêneros e 16 espécies de Asclepiadaceae ocorrentes na Reserva do Parque Estadual das Fontes do Ipiranga: Asclepias curassavica L., Blepharodon nitidum (Vell.) J F. Macbr., Ditassa burchellii var. vestita (Malme) Fontella, Ditassa hispida (Vell.) Fontella, Ditassa tomentosa (Decne.) Fontella, Gomphocarpus physocarpus E. Mey., Gonianthela axillaris (Vell.) Fontella & E.A. Schwarz, Matelea glaziovii (E. Fourn.) Morillo, Orthosia urceolata E. Fourn., Oxypetalum appendiculatum Mart., Oxypetalum capitatum subsp. capitatum Mart., Oxypetalum insigne (Decne.) Malme, Oxypetalumpachyglossum Decne., Oxypetalumpedicellatum Decne., Oxypetalum wightianum Hook. & Arn., Tassadia subulata var. subulata (Vell.) Fontella & E.A. Schwarz. São apresentadas descrições e ilustrações para todas as espécies estudadas, bem como chaves para identificação das espécies dos gêneros Ditassa e Oxypetalum tomando como base a morfologia dos polinários.
Resumo:
Taeniogonalos raymenti is confirmed as a hyperparasitoid of the tachinid Sturmia convergens which parasitises larval Danaus plexippus. Trigonalids are indirect parasitoids and in this case we have direct evidence that wasp eggs must have been laid on the caterpillar's host plant. Asclepias fruticosa. before the secondary host, but not necessarily before the primary tachinid host, was present. Levels of hyperparasitism during our sampling period were very low at less than two percent.
Resumo:
Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically alter the defensive phenotype of plants, we concur with recent calls for a whole-plant perspective in testing models of plant defense allocation.
Resumo:
Given the dual role of many plant traits to tolerate both herbivore attack and abiotic stress, the climatic niche of a species should be integrated into the study of plant defense strategies. Here we investigate the impact of plant reproductive strategy and components of species' climatic niche on the rate of chemical defense evolution in the milkweeds using a common garden experiment of 49 species. We found that across Asclepias species, clonal reproduction repeatedly evolved in lower temperature conditions, in species generally producing low concentrations of a toxic defense (cardenolides). Additionally, we found that rates of cardenolide evolution were lower for clonal than for nonclonal species. We thus conclude that because the clonal strategy is based on survival, long generation times, and is associated with tolerance of herbivory, it may be an alternative to toxicity in colder ecosystems. Taken together, these results indicate that the rate of chemical defense evolution is influenced by the intersection of life-history strategy and climatic niches into which plants radiate.
Resumo:
Asclepias subulata Decne. is a shrub occurring in Sonora-Arizona desert (Mexico-USA). The ethnic groups, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To isolate the compounds responsible for antiproliferative activity of the methanol extract of A. subulata. A bioguided fractionation of methanol extract of A. subulata was performed using MTT assay to measure the antiproliferative activity of different compounds on three human cancer cell lines (A549, LS 180 and PC-3), one murine cancer cell line (RAW 264.7) and one human normal cell line (ARPE-19). The methanol extract was partitioned with hexane, ethyl acetate and ethanol. The active fractions, ethanol and residual, were fractioned by silica-column chromatography and active sub-fractions were separated using HPLC. The chemical structures of isolated compounds were elucidated with different chemical and spectroscopic methods. A new cardenolide glycoside, 12, 16-dihydroxycalotropin, and three known, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, were isolated of active sub-fractions. All isolated compounds showed a strong antiproliferative activity in human cancer cells. Calotropin was the more active with IC50 values of 0.0013, 0.06 and 0.41 µM on A549, LS 180 and PC-3 cell lines, respectively; while 12, 16-dihydroxycalotropin reached values of 2.48, 5.62 and 11.70 µM, on the same cells; corotoxigenin 3-O-glucopyranoside had IC50 of 2.64, 3.15 and 6.62 µM and desglucouzarin showed values of 0.90, 6.57 and 6.62, µM. Doxorubicin, positive control, showed IC50 values of 1.78, 6.99 and 3.18 µM, respectively. The isolated compounds had a weak effect on murine cancer cells and human normal cells, exhibiting selectivity to human cancer cells. In this study, we found that 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin are responsible of antiproliferative properties of A. subulata, and that these compounds are highly selective to human cancer cells. Further studies are needed in order to establish the action mechanisms of the isolated compounds.
Resumo:
Common bean (Phaseolus vulgaris) is present in the daily diet of various countries and, as for other legumes, has been investigated for its nutraceutical potential. Thus, 16 genotypes from different gene pools, representing seven types of seed coats and different responses to pathogens and pests, were selected to verify their isoflavone contents. The isoflavonoids daidzein and genistein and the flavonols kaempferol, myricetin, and quercetin were found. Grains of the black type showed the highest concentrations of isoflavonoids and were the only ones to exhibit daidzein. IAC Formoso, with high protein content and source of resistance to anthracnose, showed the greatest concentration of genistein, representing around 11% of the content present in soybean, as well as high levels of kaempferol. Arc 1, Raz 55, and IAC Una genotypes showed high content of coumestrol. The results suggest the use of IAC Formoso to increase the nutraceutical characteristics in common bean.
Resumo:
Genipap fruits, native to the Amazon region, were classified in relation to their stage of ripeness according to firmness and peel color. The influence of the part of the genipap fruit and ripeness stage on the iridoid and phenolic compound profiles was evaluated by HPLC-DAD-MS(n), and a total of 17 compounds were identified. Geniposide was the major compound in both parts of the unripe genipap fruits, representing >70% of the total iridoids, whereas 5-caffeoylquinic acid was the major phenolic compound. In ripe fruits, genipin gentiobioside was the major compound in the endocarp (38%) and no phenolic compounds were detected. During ripening, the total iridoid content decreased by >90%, which could explain the absence of blue pigment formation in the ripe fruits after their injury. This is the first time that the phenolic compound composition and iridoid contents of genipap fruits have been reported in the literature.
Resumo:
The androgynophore column, a distinctive floral feature in passion flowers, is strongly crooked or bent in many Passiflora species pollinated by bats. This is a floral feature that facilitates the adaptation to bat pollination. Crooking or bending of plant organs are generally caused by environmental stimulus (e.g. mechanical barriers) and might involve the differential distribution of auxin. Our aim was to study the role of the perianth organs and the effect of auxin in bending of the androgynophore of the bat-pollinated species Passiflora mucronata. Morpho-anatomical characterisation of the androgynophore, including measurements of curvature angles and cell sizes both at the dorsal (convex) and ventral (concave) sides of the androgynophore, was performed on control flowers, flowers from which perianth organs were partially removed and flowers treated either with auxin (2,4-dichlorophenoxyacetic acid; 2,4-D) or with an inhibitor of auxin polar transport (naphthylphthalamic acid; NPA). Asymmetric growth of the androgynophore column, leading to bending, occurs at a late stage of flower development. Removing the physical constraint exerted by perianth organs or treatment with NPA significantly reduced androgynophore bending. Additionally, the androgynophores of plants treated with 2,4-D were more curved when compared to controls. There was a larger cellular expansion at the dorsal side of the androgynophores of plants treated with 2,4-D and in both sides of the androgynophores of plants treated with NPA. This study suggests that the physical constraint exerted by perianth and auxin redistribution promotes androgynophore bending in P. mucronata and might be related to the evolution of chiropterophily in the genus Passiflora.