102 resultados para Artrosphira platensis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micro-organismos fotossintetizantes, incluído aqui o gênero Arthrospira, vêm sendo amplamente produzidos em larga escala em vários países, detendo um mercado que gera mais de 1 bilhão de dólares ao ano. A produção industrial utiliza grande volume de água com alta concentração salina para produzir milhares de toneladas de biomassa microalgal. É crescente a utilização de tratamento de águas por processo de separação por membranas, demonstrando ser uma técnica que gera água de ótima qualidade, de instalação compacta e de fácil automação. No presente trabalho, foi avaliada esta tecnologia para o reaproveitamento do meio de cultura em novos cultivos de micro-organismos fotossintetizantes, visando contribuir para a sustentabilidade deste processo produtivo. O efluente do cultivo de Arthrospira platensis oriundo de processo descontínuo em minitanques foi submetido a tratamento por membranas de filtração tangencial, incluindo microfiltração (MF) (porosidades de 0,65 µm e de 0,22 µm) e ultrafiltração (UF) (peso molecular de corte de 5.000 Da), em pressões transmembrana (TMP) de 22,5 a 90 kPa. Os processos de MF levaram a reduções médias de 53,9±1,3 % e 93,1±1,1 % de matéria orgânica natural (NOM) e pigmentos nos meios residuais, respectivamente. Com o uso de processos de UF, cujos meios foram previamente tratados por MF (0,22 µm e 22,5 kPa), as reduções médias de NOM e pigmentos foram de 57,2±0,5 % e 94,0±0,8 %, respectivamente. Os processos de MF com TMP de 22,5 kPa levaram a concentrações celulares máximas (Xm) equivalentes às obtidas com meio novo. O uso de membrana de 0,65 µm e TMP de 22,5 kPa levou a uma perda média de 2,9 %, 22,7 % e 16,4% dos nutrientes carbonato, fosfato e nitrato, respectivamente, mas a correção desses valores aos mesmos do meio padrão levou à obtenção dos mais altos valores de Xm (3586,6±80 mg L-1), produtividade em células (505,0±11,6 mg L-1 d-1) e fator de conversão de nitrogênio em células (29,6±0,7 mg mg-1). O teor protéico da biomassa foi estatisticamente igual ao da biomassa obtida de cultivo com meio padrão novo. Os dados deste trabalho evidenciam que processos de filtração por membrana são promissores para o reuso de meio de micro-organismos fotossintetizantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cattle consuming pastures low in protein have low liveweight gain due to low rumen degradable protein (RDP) supply and thus low microbial crude protein (MCP) production and efficiency of MCP production [EMCP, g MCP/kg digestible organic matter (DOM)]. Nitrogen supplements can increase MCP production and EMCP of cattle grazing low protein pastures. The objective of this study was to compare the effects of supplementation with a non-protein-N source (NPN), in this case urea and ammonium sulfate (US), with a single-cell algal protein source (Spirulina platensis), on intake, microbial protein supply and digestibility in cattle. Nine cannulated Bos indicus steers [initial liveweight 250.1 ± 10.86 (s.d.) kg] were fed Mitchell grass hay (Astrebla spp; 6.1 g N, 746 g NDF/kg DM) ad libitum and were supplied with increasing amounts of US (0, 6, 13, 19 and 33 g US DM/kg hay DM) or Spirulina 0, 0.5, 1.4, 2.5 and 6.1 g Spirulina DM/kg W.day in an incomplete Latin square design. The response of MCP production and EMCP to increasing amounts of the two supplements was different, with a greater response to Spirulina evident. The MCP production was predicted to peak at 140 and 568 g MCP/day (0.64 and 2.02 g MCP/kg W.day) for the US and Spirulina supplements, respectively. The highest measured EMCP were 92 and 166 g MCP/kg DOM for the US and Spirulina treatments at 170 and 290 g RDP/kg DOM, respectively, or a Spirulina intake of 5.7 g DM/kg W.day. Increasing RDP intake from US and Spirulina resulted in an increase in Mitchell grass hay intake and rumen NH3-N concentration and reduced the retention time of liquid and particulate markers and digesta DM, NDF and lignin in the rumen with greater changes due to Spirulina. Total DM intake peaked at a Spirulina supplement level of 4.6 g Spirulina DM/kg W.day with a 2.3-fold higher DOM intake than Control steers. Rumen NH3-N concentrations reached 128 and 264 mg NH3-N/L for the US and Spirulina treatments with a significant increase in the concentration of branched-chain fatty acids for the Spirulina treatment. The minimum retention time of liquid (Cr-EDTA; 23 and 13 h) and particulate (Yb; 34 and 22 h) markers in the rumen were significantly lower for Spirulina compared with US and lower than unsupplemented animals at 24 and 34 h for Cr-EDTA and Yb, respectively. Spirulina could be provided safely at much higher N intakes than NPN supplements. The results suggest that, at an equivalent RDP supply, Spirulina provided greater increases than US in MCP production, EMCP and feed intake of Bos indicus cattle consuming low protein forage and could also be fed safely at higher levels of N intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report data from two related assay systems (isolated enzyme assays and whole blood assays) that C-phycocyanin a biliprotein from Spirulina platensis is a selective inhibitor of cyclooxygenase-a (COX-2) with a very low IC50 COX-2/IC50 COX-1 ratio (0.04). The extent of inhibition depends on the period of preincubation of phycocyanin with COX-2, but without any effect on the period of preincubation with COX-1. The IC50 value obtained for the inhibition of COX-2 by phycocyanin is much lower (180 nM) as compared to those of celecoxib (255 nM) and rofecoxib (401 nM), the well-known selective COX-2 inhibitors. In the human whole blood assay, phycocyanin very efficiently inhibited COX-2 with an IC50 value of 80 nM. Reduced phycocyanin and phycocyanobilin, the chromophore of phycocyanin are poor inhibitors of COX-2 without COX-2 selectivity. This suggests that apoprotein in phycocyanin plays a key role in the selective inhibition of COX-2. The present study points out that the hepatoprotective, anti-inflammatory, and anti-arthritic properties of phycocyanin reported in the literature may be due, in part, to its selective COX-2 inhibitory property, although its ability to efficiently scavenge free radicals and effectively inhibit lipid peroxidation may also be involved. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Análisis del crecimiento y estudio bioeconómico del sábalo (Prochilodus platensis Holmberg) en la cuenca del Plata. (PDF tiene 31 paginas.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the industrial cultivation of blue-green algae, there very much appears the important question about their carbon nutrition. Spirulina grows within the range of pH value of medium of 8.5 - 11.0. In this range of pH value in the culture medium CO2 is present in the form of bicarbonate and carbonate, which serves as principal source of carbon for the present type of algae. There is little information yet about the influence of the pH of the medium, and the form of carbon components of the medium, on the rate-increase of Spirulina. Investigations were conducted into the influence of some pH values of medium on the rate-increase of the alga Spirulina platensis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of similar to 30 degrees C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280-400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400-700 nm] and PAB [PAR + UV-A + UV-B: 280-700]), three temperatures (15, 22, and 30 degrees C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] . L-1). UVR caused a breakage of the spiral structure at 15 degrees C and 22 degrees C, but not at 30 degrees C. High PAR levels also induced a significant breakage at 15 degrees C and 22 degrees C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15 degrees C but was relatively high at 30 degrees C even under the treatment with UVR in 8 h. At 30 degrees C, UVR led to 93%-97% less DNA damage when compared with 15 degrees C after 8 h of exposure. UV-absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature-dependent effects of UVR on this organism are discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The minor variant of the economically important cyanobacterium, Arthrospira platensis, usually appears in commercial production ponds under solar radiation. However, how sensitive the minor variant to solar UVR and whether its occurrence relates to the solar exposures are not known. We investigated the photochemical efficiency of PSII and growth rate of D-0083 strain and its minor variant in semi-continuous cultures under PAR (400-700 nm) alone, PAR + UV-A (320-400 nm) and PAR + UV-A + UV-B (280-700 nm) of solar radiation. The effective quantum yield of D-0083 at 14:00 p.m. decreased by about 86% under PAR, 87% under PAR + UV-A and 92% under PAR + UV-A + UV-B (280-315 nm), respectively. That of the minor variant was reduced by 93% under PAR and to undetectable values in the presence of UV-A or UV-A + UV-B. Diurnal change of the yield showed constant pattern during long-term (10 days) exposures, high in the early morning and late afternoon but the lowest at noontime in both strains, with the UVR-related inhibition being always higher in the variant than D-0083. During the long-term exposures, cells of D-0083 acclimated faster to solar UV radiation and showed paralleled growth rates among the treatments with or without UVR at the end of the experiment; however, growth of the minor variant was significantly reduced by UV-A and UV-B throughout the period. Comparing to the major strain D-0083, the minor variant was more sensitive to UVR in terms of its growth, quantum yield and acclimation to solar radiation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive accumulation of dissolved organic matter (DOM) in the culture ponds of Spirulina platensis is usually considered to be one of the potential factors affecting the production of S. platensis, however, we are not quite aware of effects of DOM on the growth and pigments synthesis of S. platensis. In the present study, S. platensis was grown in batch or semi-continuous cultures using the filtrate in the culture ponds that had not been renewed for years. It was found that disssolved organic carbon up to 60 mg/L did not bring about an inhibitory effect on the growth of S. platensis, but increased the contents of chlorophyll a and phycocyanin instead. However, further accumulation of dissolved organic matter could decrease the content of chlorophyll a.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.