891 resultados para Artificial grain boundary weak link
Resumo:
The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.
Resumo:
Weak links were fabricated by pulsed laser deposition of YBa 2Cu3Ox thin films on Y-ZrO2 bicrystal substrates. They were formed by transferring the bicrystal boundary into the epitaxial film during the film growth. Their properties were determined by the misorientation angle ( theta ) between the two halves of the bicrystal. The transport properties of the weak links were studied as a function of theta and an exponential dependence of the weak link critical current density was observed for angles up to 45 degrees . Clear Josephson effects with good microwave and magnetic field response were observed.
Resumo:
Using a magneto-optical (MO) technique, magnetic field distributions have been measured in a melt-textured YBa 2Cu 3O 7-x bulk superconductor, joined to form an artificial grain boundary (GB), in an external magnetic field perpendicular to the sample surface. The magnetic field at a weak section of the GB shows different values between the field increasing up to 150mT and decreasing down to 0T after zero-field-cooling. Namely, the magnetic field in increasing field is higher than that in decreasing field, even in the same external field. This result supports a model in which such differences in magnetic field at the weak-link GB give rise to the hysteresis behavior in the field dependence of transport critical current density in polycrystalline samples. The field distributions across a well-joined region of the GB behave similarly to the adjoining bulk material and this result indicates the possibility of creating useful artifacts provided that the strongly coupled sections can be reproduced on a larger scale.
Resumo:
Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]
Resumo:
A non-weak link joining technique has been developed for YBCO pseudo-crystals fabricated by seeded peritectic solidification based on the formation of a liquid phase which segregates from the platelet boundaries at temperatures above = 920 °C. Electrical and magnetic measurements on these boundaries suggest that their irreversibility field can be as high as 7 T at 77 K in fully oxygenated pseudo-crystals joined along their crystallographic ab-planes which is comparable to the irreversibility behaviour of the adjacent YBCO grains. © 1999 IEEE.
Resumo:
The microstructure of artificial grain boundaries in YBa2Cu3O7-δ (YBCO) thin films grown on [001] tilt YZrO2 (YSZ) bicrystal substrates has been characterized using transmission electron microscopy and atomic force microscopy. Despite a relatively straight morphology of the substrate boundaries, the film boundaries were wavy. The waviness was a result of the combined effects of grooving at the substrate boundaries prior to the film deposition and an island-growth mechanism for YBCO on YSZ substrates. The dihedral angle of the groove walls varied with the misorientation angle and depended on the symmetry of the substrate boundary. The amplitudes of the film boundary waviness compared well with the widths of the grooves. In addition, the grooves induced local bending of the YBCO lattice planes and additional tilt components perpendicular to the c-axis close to the film boundaries. © 1995.
Resumo:
To investigate the meaning and understanding of domestic food preparation within the lived experience of the household's main food preparer this ethnographic study used a combination of qualitative and quantitative methodologies. Data were collected from three sources: the literature; an in-store survey of251 food shoppers chosen at random while shopping during both peak and off peak shopping periods at metropolitan supermarkets; and semi-structured interviews with the principal food shopper and food preparer of 15 different Brisbane households. Male and female respondents representing a cross section of socio-economic groupings, ranged in age from 19-79 years and were all from English speaking backgrounds. Changes in paid labour force participation, income and education have increased the value of the respondents' time, instigating massive changes in the way they shop, cook and eat. Much of their food preparation has moved from the domestic kitchen into the kitchens of other food establishments. For both sexes, the dominant motivating force behind these changes is a combination of the their self perceived lack of culinary skill; lack of enjoyment of cooking and lack of motivation to cook. The females in paid employment emphasise all factors, particularly the latter two, significantly more than the non-employed females. All factors are of increasing importance for individuals aged less than 35 years and conversely, of significantly diminished importance to older respondents. Overall, it is the respondents aged less than 25 years who indicate the lowest cooking frequency and/or least cooking ability. Inherent in this latter group is an indifference to the art/practice of preparing food. Increasingly, all respondents want to do less cooking and/or get the cooking over with as quickly as possible. Convenience is a powerful lure by which to spend less time in the kitchen. As well, there is an apparent willingness to pay a premium for convenience. Because children today are increasingly unlikely to be taught to cook, addressing the food skills deficit and encouraging individuals to cook for themselves are significant issues confronting health educators. These issues are suggested as appropriate subjects of future research.
Resumo:
The grain size dependence of the yield stress in hot rolled 99.87 pct magnesium sheets and rods was measured in the temperature range 77 K to 420 K. Hot rolling produced strong basal textures and, for a given grain size, the hot rolled material has a higher strength than extruded material. The yield strength-grain size relation in the above temperature range follows the Hall-Petch equation, and the temperature dependencies of the Hall-Petch constants σ0 and k are in support of the theory of Armstrong for hcp metals that the intercept σ0 is related to the critical resolved shear stress (CRSS) for basal slip (easy slip) and the slope k is related to the CRSS for prismatic slip (difficult slip) occurring near the grain boundaries. In the hot rolled magnesium, σ0 is larger and k is smaller than in extruded material, observations which are shown to result from strong unfavorable basal and favorable 1010 textures, respectively. Texture affects the Hall-Petch constants through its effect on the orientation factors relating them to the CRSS for the individual slip systems controlling them.
Resumo:
Tensile experiments on a fine-grained single-phase Mg–Zn–Al alloy (AZ31) at 673 K revealed superplastic behavior with an elongation to failure of 475% at 1 × 10−4 s−1 and non-superplastic behavior with an elongation to failure of 160% at 1 × 10−2 s−1; the corresponding strain rate sensitivities under these conditions were 0.5 and 0.2, respectively. Measurements indicated that the grain boundary sliding (GBS) contribution to strain ξ was 30% under non-superplastic conditions; there was also a significant sharpening in texture during such deformation. Under superplastic conditions, ξ was 50% at both low and high elongations of 20% and 120%; the initial texture became more random under such conditions. In non-superplastic conditions, deformation occurred under steady-state conditions without grain growth before significant flow localization whereas, under superplastic conditions, there was grain growth during the early stages of deformation, leading to strain hardening. The grains retained equiaxed shapes under all experimental conditions. Superplastic deformation is attributed to GBS, while non-superplastic deformation is attributed to intragranular dislocation creep with some contribution from GBS. The retention of equiaxed grain shapes during dislocation creep is consistent with a model based on local recovery related to the disturbance of triple junctions.