411 resultados para Arthropods
Resumo:
Biogeography and metacommunity ecology provide two different perspectives on species diversity. Both are spatial in nature but their spatial scales do not necessarily match. With recent boom of metacommunity studies, we see an increasing need for clear discrimination of spatial scales relevant for both perspectives. This discrimination is a necessary prerequisite for improved understanding of ecological phenomena across scales. Here we provide a case study to illustrate some spatial scale-dependent concepts in recent metacommunity studies and identify potential pitfalls. We presented here the diversity patterns of Neotropical lepidopterans and spiders viewed both from metacommunity and biogeographical perspectives. Specifically, we investigated how the relative importance of niche- and dispersal-based processes for community assembly change at two spatial scales: metacommunity scale, i.e. within a locality, and biogeographical scale, i.e. among localities widely scattered along a macroclimatic gradient. As expected, niche-based processes dominated the community assembly at metacommunity scale, while dispersal-based processes played a major role at biogeographical scale for both taxonomical groups. However, we also observed small but significant spatial effects at metacommunity scale and environmental effects at biogeographical scale. We also observed differences in diversity patterns between the two taxonomical groups corresponding to differences in their dispersal modes. Our results thus support the idea of continuity of processes interactively shaping diversity patterns across scales and emphasize the necessity of integration of metacommunity and biogeographical perspectives.
Resumo:
Fungal entomopathogens have been used more frequently than other types of pathogens for classical biological control. Among 136 programs using different groups of arthropod pathogens, 49.3% have introduced fungal pathogens (including both the traditional fungi and microsporidia). The most commonly introduced species was Metarhizium anisopliae (Metschnikoff) Sorokin, with 13 introductions, followed by Entomophaga maimaiga Humber, Shimazu & Soper, which was released seven times. The majority of introduction programs have focused on controlling invasive species of insects or mites (70.7%) rather than on native hosts (29.4%). Almost half of the introductions of traditional fungi targeted species of Hemiptera and 75% of the microsporidia introduced have been introduced against lepidopteran species. The United States was the country where most introductions of fungi took place (n = 24). From 1993 to 2007, no arthropod pathogens were released in the US due to the rigorous regulatory structure, but in 2008 two species of microsporidia were introduced against the gypsy moth, Lymantria dispar (L.). Establishment of entomopathogenic fungi in programs introducing traditional fungi was 32.1% and establishment was 50.0% for programs introducing microsporidia. In some programs, releases have resulted in permanent successful establishment with no non-target effects. In summary, classical biological control using fungal entomopathogens can provide a successful and environmentally friendly avenue for controlling arthropod pests, including the increasing numbers of invasive non-native species.
Resumo:
Plasmids are mobile genetic elements of bacteria that can impart important adaptive traits, such as increased virulence or antibiotic resistance. We report the existence of plasmids in Rickettsia (Rickettsiales; Rickettsiaceae) species, including Rickettsia akari, ""Candidatus Rickettsia amblyommii,"" R. bellii, R. rhipicephali, and REIS, the rickettsial endosymbiont of Ixodes scapularis. All of the rickettsiae were isolated from humans or North and South American ticks. R. parkeri isolates from both continents did not possess plasmids. We have now demonstrated plasmids in nearly all Rickettsia species that we have surveyed from three continents, which represent three of the four major proposed phylogenetic groups associated with blood-feeding arthropods. Gel-based evidence consistent with the existence of multiple plasmids in some species was confirmed by cloning plasmids with very different sequences from each of two ""Ca. Rickettsia amblyommii"" isolates. Phylogenetic analysis of rickettsial ParA plasmid partitioning proteins indicated multiple parA gene origins and plasmid incompatibility groups, consistent with possible multiple plasmid origins. Phylogenetic analysis of potentially host-adaptive rickettsial small heat shock proteins showed that hsp2 genes were plasmid specific and that hsp1 genes, found only on plasmids of ""Ca. Rickettsia amblyommii,"" R. felis, R. monacensis, and R. peacockii, were probably acquired independently of the hsp2 genes. Plasmid copy numbers in seven Rickettsia species ranged from 2.4 to 9.2 per chromosomal equivalent, as determined by real-time quantitative PCR. Plasmids may be of significance in rickettsial evolution and epidemiology by conferring genetic plasticity and host-adaptive traits via horizontal gene transfer that counteracts the reductive genome evolution typical of obligate intracellular bacteria.
Resumo:
Abstract This review presents the main species of venomous and poisonous arthropods, with commentary on the clinical manifestations provoked by the toxins and therapeutic measures used to treat human envenomations. The groups of arthopods discussed include the class Arachnida (spiders and scorpions, which are responsible for many injuries reported worldwide, including Brazil); the subphylum Myriapoda, with the classes Chilopoda and Diplopoda (centipedes and millipedes); and the subphylum Hexapoda, with the class Insecta and the orders Coleoptera (beetles), Hemiptera (stink bugs, giant water bugs, and cicadas), Hymenoptera (ants, wasps, and bees), and Lepidoptera (butterflies and moths).
Resumo:
Two canopies of a widely distributed Amazonian tree species, Goupia glabra Aubl. (Celastraceae, height 38 and 45m) were fogged several times with 1% natural pyrethrum during the rainy and dry seasons (1991-1994) in the Adolpho Ducke Forest Reserve near Manaus/Brazil. Between 50 and 158 ind./m2 of arthropods were obtained per tree and fogging event. Hymenoptera, mostly Formicidae, and Diptcra dominated. A total of 95 ant species occurred on a single tree. Most ants were permanently foraging in the canopy and their recolonization after fogging seems to follow stochastic pathways. Data indicated an interaction between - 1) predating Formicidae and gall building Cecidomyiidae and - 2) Cecidomyiidae and the parasitic Hymenoptera.
Resumo:
v.39:no.4(1978)
Resumo:
Necrophagous insects, mainly Diptera and Coleoptera, are attracted to specific stages of carcass decomposition, in a process of faunistic succession. They are very important in estimating the postmortem interval, the time interval between the death and the discovery of the body. In studies done with pig carcasses exposed to natural conditions in an urban forest (Santa Genebra Reservation), located in Campinas, State of São Paulo, southeastern Brazil, 4 out of 36 families of insects collected - Calliphoridae, Sarcophagidae, Muscidae (Diptera) and Dermestidae (Coleoptera) - were considered of forensic importance, because several species were collected in large numbers both visiting and breeding in pig carcasses. Several species were also observed and collected on human corpses at the Institute of Legal Medicine. The species belonged to 17 different families, 6 being of forensic importance because they were reared from human corpses or pig carcasses: Calliphoridae, Sarcophagidae, Muscidae, Piophilidae (Diptera), Dermestidae, Silphidae and Cleridae (Coleoptera). The most important species were: Diptera - Chrysomya albiceps, Chrysomya putoria, Hemilucilia segmentaria, Hemilucilia semidiaphana (Calliphoridae), Pattonella intermutans (Sarcophagidae), Ophyra chalcogaster (Muscidae), Piophila casei (Piophilidae); Coleoptera - Dermestes maculatus (Dermestidae), Oxyletrum disciolle (Silphidae) and Necrobia rufipes (Cleridae).
Resumo:
A study of the associations between three species of rodents in the Atlantic forest and their parasitic arthropods was undertaken at the Juréia-Itatins Ecological Station, located in the State of São Paulo, Southeastern Brazil, from March 1989 to February 1990. Individuals of three species, Oryzomys russatus, Proechimys iheringi and Nectomys squamipes were captured and examined for ectoparasites. Eleven species of parasitic arthropods were found, including four species of insects and seven of Acari. Parasitism intensity, phenology, and rainfall were positively correlated with the abundance of the ectoparasites and their hosts. The most abundant host was O. russatus (Muridae: Sigmodontinae), and the most common parasite on it was the laelapid mite Gigantolaelaps oudemansi. The cuterebrid Metacuterebra apicalis caused myiasis in O. russatus. A mutualistic association between the staphylinid beetle Amblyopinus sp. and its host P. iheringi (Echimyidae) was observed. The few N. squamipes captured had small numbers of ectoparasites.
Resumo:
Eight species of Harpellales and three species of Eccrinales (Zygomycota: Trichomycetes) were found associated with the digestive tract of arthropods from terrestrial and aquatic environments in the central Amazon region of Brazil. New species of Harpellales include: Harpella amazonica, Smittium brasiliense, Genistellospora tropicalis in Simuliidae larvae and Stachylina paucispora in Chironomidae larvae. Axenic cultures of S. brasiliense were obtained. Probable new species of Enterobryus (Eccrinales), Harpella, and Stachylina (Harpellales) are described but not named. Also reported are the previously known species of Eccrinales, Passalomyces compressus and Leidyomyces attenuatus in adult Coleoptera (Passalidae), and Smittium culisetae and Smittium aciculare (Harpellales) in Culicidae and Simuliidae larvae, respectively. Comments on the distribution of some of these fungi and their hosts in the Neotropics are provided.
Resumo:
The role of ecology in the evolution and maintenance of arthropod sociality has received increasing research attention in recent years. In some organisms, such as halictine bees, polistine wasps, and social spiders, researchers are investigating the environmental factors that may contribute to high levels of variation in the degree of sociality exhibited both among and within species. Within lineages that include only eusocial members, such as ants and termites, studies focus more on identifying extrinsic factors that may contribute to the dramatic variation in colony size, number of queens, and division of labour that is evident across these species. In this review, I propose a comparative approach that seeks to identify environmental factors that may have a common influence across such divergent social arthropod groups. I suggest that seeking common biogeographic patterns in the distribution of social systems or key social traits may help us to identify ecological factors that play a common role in shaping the evolution of sociality across different organisms. I first review previous studies of social gradients that form along latitudinal and altitudinal axes. Within families and within species, many organisms show an increasing degree of sociality at lower latitudes and altitudes. In a smaller number of cases, organisms form larger groups or found nests cooperatively at higher latitudes and altitudes. I then describe several environmental factors that vary consistently along such gradients, including climate variables and abundance of predators, and outline their proposed role in the social systems of terrestrial arthropods. Finally, I map distributions of a social trait against several climatic factors in five case studies to demonstrate how future comparative studies could inform empirical research.
Resumo:
Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil. This study represents a contribution to the knowledge of the diversity of arthropods associated to the canopy of Vochysia divergens Pohl (Vochysiaceae). Three trees individuals were sampled during two seasonal periods in this region: a) by spraying one tree canopy during high water (February); b) by fogging two tree canopies during low water (September/October). The 15,744 arthropods (183.2±38.9 individuals/m²) obtained from all three trees (86 m²) represented 20 taxonomic orders, 87.1% were Insecta, and 12.9% Arachnida. The dominant groups were Hymenoptera (48.5%; 88.9 individuals/m²), mostly Formicidae (44.5%; 81.4 individuals/m²), followed by Coleoptera (14.0%; 25.5 individuals/m²) and Araneae (10.2%; 19.5 individuals/m²), together representing 62.5% of the total catch. Fourteen (70%) of all orders occurred on three trees. Dermaptera, Isoptera, Neuroptera, Odonata, Plecoptera and Trichoptera were collected from only one tree. Of the total, 2,197 adult Coleoptera collected (25.5±11.3 individuals/m²), 99% were assigned to 32 families and 256 morphospecies. Nitidulidae (17.9% of the total catch; 4.6 individuals/m²), Anobiidae (16.7%; 4.3 individuals/m²), Curculionidae (13.2%; 3.4 individuals/m²) and Meloidae (11.4%; 2.9 individuals/m²) dominated. The communitiy of adult Coleoptera on V. divergens indicated a dominance of herbivores (37.8% of the total catch, 127 spp.) and predators (35.2%, 82 spp.), followed by saprophages (16.2%, 32 spp.) and fungivores (10.8%, 15 spp.). The influence of the flood pulse on the community of arboreal arthropods in V. divergens is indicated by the seasonal variation in evaluated groups, causing changes in their structure and composition.
Resumo:
Highly diverse forms of galling arthropods can be identified in much of southeastern Brazil's vegetation. Three fragments of a Seasonally Dry Tropical Forest (SDTF) located in the southern range of the Espinhaço Mountains were selected for study in the first survey of galling organisms in such tropical vegetation. Investigators found 92 distinct gall morphotypes on several organs of 51 host plant species of 19 families. Cecidomyiidae (Diptera) was the most prolific gall-inducing species, responsible for the largest proportion of galls (77%) observed. Leaves were the most frequently galled plant organ (63%), while the most common gall morphotype was of a spherical shape (30%). The two plant species, Baccharis dracunculifolia (Asteraceae) and Celtis brasiliensis (Cannabaceae), presented the highest number of gall morphtypes, displaying an average of 5 gall morphotypes each. This is the first study of gall-inducing arthropods and their host plant species ever undertaken in a Brazilian SDTF ecosystem. Given the intense human pressure on SDTFs, the high richness of galling arthropods, and implied floral host diversity found in this study indicates the need for an increased effort to catalogue the corresponding flora and fauna, observe their intricate associations and further understand the implications of such rich diversity in these stressed and vulnerable ecosystems.
Resumo:
Forensic Entomology research has been concentrated in only a few localities of the "Cerrado" vegetation, the Brazilian Savannah. The present study had, as its objective, an examination of the diversity of arthropod fauna associated with the carcasses of Sus scrofa (Linnaeus) in this biome. The study was conducted during the dry and humid periods in two Cerrado vegetation profiles of the State of Minas Gerais. The decaying process was slower and greater quantities of arthropods were collected during the dry period. Insects represented 99% of 161,116 arthropods collected. The majority of these were Diptera (80.2%) and Coleoptera (8.8%). The entomofauna belong to 85 families and at least 212 species. Diptera were represented by 31 families and at least 132 species. Sarcophagidae (Diptera) and Scarabaeidae (Coleoptera) were the richest groups. Oxysarcodexia (Sarcophagidae) presented the largest number of attracted species, however none of these species bred in the carcasses. The Coleoptera collected belong to at least 50 species of 21 families. Among these species, Dermestes maculatus and Necrobia rufipes were observed breeding in the carcasses. This study showed species with potential importance for estimating the postmortem interval (PMI), indicative of seasonal and environmental type located.
Resumo:
The first investigation of arthropods associated with carrion in Cameroon was carried out within the campus of the University of Yaounde I (Cameroon) from 17thJanuary to 3rd April 2008. Carcasses of rats (Rattus norvegicus Berkenhout, 1769 var WISTAR) were exposed to colonization by the local fauna of arthropods. The invading organisms were collected daily during the study period. 2287 individuals of arthropod belonging to 3 classes, 16 orders, 37 families and 7 subfamilies were identified. The insects assessed were mainly Diptera, Coleoptera and Acari. This study illustrates the high diversity of the necroentomofauna in Cameroon and provides an insight approximation into the succession pattern of invading insect and a weekly estimation of the time of death.
Resumo:
Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads.