85 resultados para Arthropoda
Resumo:
Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.
Resumo:
We determined the mitochondrial MA (mtDNA) sequences of two luminous beetles (Arthropoda, Insecta, Coleoptera), Rhagophthalmus lufengensis from Yunnan, China and Rhagophthalmus ohbai from Yaeyama Island, Japan. We identified all the 37 mtDNA genes of R. l
Resumo:
Caatinga is an important laboratory for studies about arthropods adaptations and aclimatations because its precipitation is highly variable in time. We studied the effects of time variability over the composition of Arthropods in a caatinga area. The study was carried out at a preservation area on Almas Farm, São José dos Cordeiros, Paraíba. Samples were collected in two 100 m long parallel transects, separated for a 30 m distance, in a dense tree dominated caatinga area, between August 2007 and July 2008. Samples were collected in each transect every 10 m. Ten soil samples were taken from each transect, both at 0-5 cm (A) and 5-10 cm (B) depth, resulting in 40 samples each month. The Berlese funnel method was used for fauna extraction. We registered 26 orders and the arthropods density in the soil ranged from 3237 to 22774 individuals.m-2 from January 2007 to March 2008, respectively. There was no difference between layers A and B regarding orders abundance and richness. The groups recorded include groups with few records or that had no records in the Caatinga region yet as Pauropoda, Psocoptera, Thysanoptera, Protura and Araneae. Acari was the most abundant group, with 66,7% of the total number of individuals. Soil Arthropods presented a positive correlation with soil moisture, vegetal cover, precipitation and real evapotranspiration. Increases in fauna richness and abundance were registered in February, a month after the beginning of the rainy season. A periodic rain events in arid and semiarid ecosystems triggers physiological responses in edafic organisms, like arthropods. Edafic arthropods respond to time variability in the Caatinga biome. This fauna variation has to be considered in studies of this ecosystem, because the variation of Arthropods composition in soil can affect the dynamics of the food web through time
Resumo:
Collembola is one of the most abundant and diverse group of terrestrial arthropods, being at the base of the food chain operating in the decomposition process. They have a wide distribution in the world and can be found in practically all habitats. The knowledge of this distinctive fauna is still deficient in brazilian territory, especially in semi-arid region. The aim of this study was to investigate which climatic variables may act as predictors of species richness, abundance of individuals and compositional structure of the taxocenose of Collembola over 12 months in an area dominated by semi-arid Caatinga vegetation, northeastern Brazil and describe new species of the genus Seira found, more diverse taxon of Collembola in Brazil. Samples were collected in João Câmara, Rio Grande do Norte. Ten plots of 20 x 20 meters were established and the specimens were collected with collection effort of one hour/people using entomological aspirator. The identification and description of the species was carried out by studying the morphology and chaetotaxy. Was performed a multiple regression analysis between species richness and abundance of individuals with climatic variables. A total of 1231 individuals belonging to 15 species, 12 genera and nine families. The greatest richness and abundance of Collembola were found during the rainy season. The genus Seira was the most abundant. Rainfall explained the temporal variation in species richness and abundance of Collembola in the semi-arid region, which is consistent with the biology of these animals. The populations of Collembola showed grouped distribution. Three new species of Seira were described and illustrated and all show similarities with species already registered in the national territory
Resumo:
Collembola is one of the most abundant and diverse group of terrestrial arthropods, being at the base of the food chain operating in the decomposition process. They have a wide distribution in the world and can be found in practically all habitats. The knowledge of this distinctive fauna is still deficient in brazilian territory, especially in semi-arid region. The aim of this study was to investigate which climatic variables may act as predictors of species richness, abundance of individuals and compositional structure of the taxocenose of Collembola over 12 months in an area dominated by semi-arid Caatinga vegetation, northeastern Brazil and describe new species of the genus Seira found, more diverse taxon of Collembola in Brazil. Samples were collected in João Câmara, Rio Grande do Norte. Ten plots of 20 x 20 meters were established and the specimens were collected with collection effort of one hour/people using entomological aspirator. The identification and description of the species was carried out by studying the morphology and chaetotaxy. Was performed a multiple regression analysis between species richness and abundance of individuals with climatic variables. A total of 1231 individuals belonging to 15 species, 12 genera and nine families. The greatest richness and abundance of Collembola were found during the rainy season. The genus Seira was the most abundant. Rainfall explained the temporal variation in species richness and abundance of Collembola in the semi-arid region, which is consistent with the biology of these animals. The populations of Collembola showed grouped distribution. Three new species of Seira were described and illustrated and all show similarities with species already registered in the national territory
Resumo:
Edaphic ecosystems are the basis for the production of terrestrial biological resources and their dynamics affect not only the natural environment but also society and their economic activities. In Caatinga biome, the semi-arid climate associated with an inadequate soil management has increased the degradation and loss of productive potential of the soil. In this context, the study of soil fauna, including springtails, becomes an important indicator of soil quality. This study aimed to evaluate the fauna of Collembola in an area of Caatinga of Rio Grande do Norte State and the influence of biotic and abiotic factors, such as soil, vegetation and climate characteristics, on the structure of the taxocenosis. The environmental variables which were used were the following ones: granulometry (represented by the proportion of sand), quantity of organic matter and soil pH, richness, density and aerial biomass of the vegetal structure, and necromass. We used pitfall traps intending to collect specimens of the epiedaphic fauna of Collembola in 30 points located on Cauaçu Farm, João Câmara, RN, in July (rainy season) and November (dry season) 2011. We collected 5513 individuals of 15 species distributed in 13 genera and 9 families of Collembola. Five of the recorded species are new to science, confirming the expected high degree of endemism for Caatinga biome, and the highest abundance was recorded in the rainy season, which suggests Collembola sensitivity to low humidity. Four species were more abundant in the dry season, all of them belonged to the Order Entomobryomorpha. Results of statistical analyzes suggest that plant species richness, aerial biomass of vegetal structure, proportion of sand in the soil, pH and humidity are the main influences to the abundance of Collembola in the region studied
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present paper presents the chromosome numbers of five brazilian species of diplopods: Plusioporus setiger (2n = 10 and 2n= 10+ lB, the distinction of the sexual pair was not possible), Pseudonannolene ophiulus (2n=12, XY), Pseudonannolene halophila (2n=16, XY), Rhinocricus sp. (2n=28, XY) and Rhinocricus padbergi (2n=20, the distinction of the sexual pair was not possible).
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
As características dos artrópodes (insetos, crustáceos, aracnídeos, miriápodes) e conceitos a eles relacionados são conteúdos abordados pelas disciplinas de Ciências e Biologia, no ensino fundamental e médio. Neste contexto, considera-se relevante a elaboração de materiais que contribuam para os processos de ensino e aprendizagem desta temática e que incorporem a dimensão lúdica. Assim, a proposta desenvolvida teve como objetivos principais a elaboração e confecção de uma caixa contendo espécimes de artrópodes incrustados em resina, de modo a permitir o contato e a manipulação desses espécimes pelos alunos. Além disso, elaboramos um jogo didático, abordando as estruturas morfológicas dos artrópodes e suas funções, com o intuito de fixar o conhecimento adquirido em sala pelos alunos. Como complementação, desenvolvemos uma guia de orientação para o professor e um manual direcionado aos alunos, para os auxiliarem durante o desenvolvimento da aula. A elaboração deste trabalho foi uma maneira de tentar transmitir o tema proposto de forma dinâmica e agradável, tanto para o professor quanto para os alunos. O conteúdo fornecido neste trabalho foi baseado em livros didáticos específicos em zoologia de invertebrados, para possibilitar aulas com conteúdo adequado e para prevenir erros conceituais
Resumo:
The physic nut (Jatropha curcas L.) (Euphorbiaceae) has emerged as a new option in cultivation aimed at biodiesel production. In order to provide information that may be useful to further develop management plans for that specific crop, samples of mites were collected from cultured and wild J. curcas plants in various regions of the country and from two other species of the same genus, Jatropha gossypiifolia L. and Jatropha mollissima (Pohl) Baill. in the northeastern region of Brazil. Altogether 31 species belonging to 10 families were recorded. The family Phytoseiidae presented the largest number of species (17). Polyphagotarsonemus latus Banks (Tarsonemidae) was the most abundant species (8,503 specimens). A dichotomous key was prepared to identify all the sampled species. At least four mite species of the samples deserve attention as showing potential for being pests in the crops of J. curcas, Brevipalpus phoenicis, Brevipalpus obovatus, Polyphagotarsonemus latus and Tetranychus bastosi, the latter two often found in great abundance.
Resumo:
Eukaryotic ribosomal DNA constitutes a multi gene family organized in a cluster called nucleolar organizer region (NOR); this region is composed usually by hundreds to thousands of tandemly repeated units. Ribosomal genes, being repeated sequences, evolve following the typical pattern of concerted evolution. The autonomous retroelement R2 inserts in the ribosomal gene 28S, leading to defective 28S rDNA genes. R2 element, being a retrotransposon, performs its activity in the genome multiplying its copy number through a “copy and paste” mechanism called target primed reverse transcription. It consists in the retrotranscription of the element’s mRNA into DNA, then the DNA is integrated in the target site. Since the retrotranscription can be interrupted, but the integration will be carried out anyway, truncated copies of the element will also be present in the genome. The study of these truncated variants is a tool to examine the activity of the element. R2 phylogeny appears, in general, not consistent with that of its hosts, except some cases (e.g. Drosophila spp. and Reticulitermes spp.); moreover R2 is absent in some species (Fugu rubripes, human, mouse, etc.), while other species have more R2 lineages in their genome (the turtle Mauremys reevesii, the Japanese beetle Popilia japonica, etc). R2 elements here presented are isolated in 4 species of notostracan branchiopods and in two species of stick insects, whose reproductive strategies range from strict gonochorism to unisexuality. From sequencing data emerges that in Triops cancriformis (Spanish gonochoric population), in Lepidurus arcticus (two putatively unisexual populations from Iceland) and in Bacillus rossius (gonochoric population from Capalbio) the R2 elements are complete and encode functional proteins, reflecting the general features of this family of transposable elements. On the other hand, R2 from Italian and Austrian populations of T. cancriformis (respectively unisexual and hermaphroditic), Lepidurus lubbocki (two elements within the same Italian population, gonochoric but with unfunctional males) and Bacillus grandii grandii (gonochoric population from Ponte Manghisi) have sequences that encode incomplete or non-functional proteins in which it is possible to recognize only part of the characteristic domains. In Lepidurus couesii (Italian gonochoric populations) different elements were found as in L. lubbocki, and the sequencing is still in progress. Two hypothesis are given to explain the inconsistency of R2/host phylogeny: vertical inheritance of the element followed by extinction/diversification or horizontal transmission. My data support previous study that state the vertical transmission as the most likely explanation; nevertheless horizontal transfer events can’t be excluded. I also studied the element’s activity in Spanish populations of T. cancriformis, in L. lubbocki, in L. arcticus and in gonochoric and parthenogenetic populations of B. rossius. In gonochoric populations of T. cancriformis and B. rossius I found that each individual has its own private set of truncated variants. The situation is the opposite for the remaining hermaphroditic/parthenogenetic species and populations, all individuals sharing – in the so far analyzed samples - the majority of variants. This situation is very interesting, because it isn’t concordant with the Muller’s ratchet theory that hypothesizes the parthenogenetic populations being either devoided of transposable elements or TEs overloaded. My data suggest a possible epigenetic mechanism that can block the retrotransposon activity, and in this way deleterious mutations don’t accumulate.
Resumo:
Species diversity is the most common variable reported in recent ecological research articles. Ecological processes, however, are driven by individuals. High abundances make arthropods, despite their small body sizes, important actors in food webs. We sampled arthropod assemblages in disturbed and undisturbed vegetation types along an elevation gradient of from 800 to 4550 m a.s.l. on the southern slopes of Mt. Kilimanjaro, Tanzania. In our analysis, we focused on 13 different lineages of arthropods that represented three major functional groups: predators, herbivores and decomposers. The samples were collected with pitfall traps on 59 (of 60) study sites within the framework of the KiLi-project (https://www.kilimanjaro.biozentrum.uni-wuerzburg.de/). In each of twelve vegetation types five sampling sites of 50 m x 50 m were established with a minimum distance of 300 m between the individual sites. On each of the 59 sites, ten pitfall traps were evenly spaced along two 50 m transects, with a distance of 10 m between individual traps and 20 m between the parallel transects. Pitfall traps were filled with 100-200 ml of a mixture of ethylenglycol and water (1:1) with a drop of liquid soap to break surface tension. Traps were exposed at 2 to 5 sampling events for seven days in both the dry and wet seasons between May 2011 and October 2012. The reported abundances per lineage were averaged twice: first over all samples per site for each sampling event (3-10 analyzed samples per site and sampling event), and then averaged over all sampling events for each site.
Resumo:
We inferred phylogeny among the three major lineages of the Acari ( mites) from the small subunit rRNA gene. Our phylogeny indicates that the Opilioacariformes is the sister-group to the Ixodida+Holothyrida, not the Ixodida+Mesostigmata+Holothyrida, as previously thought. Support for this relationship increased when sites with the highest rates of nucleotide substitution, and thus the greatest potential for saturation with nucleotide substitutions, were removed. Indeed, the increase in support ( and resolution) was despite a 70% reduction in the number of parsimony-informative sites from 408 to 115. This shows that rather than 'noisy' sites having no impact on resolution of deep branches, 'noisy' sites have the potential to obscure phylogenetic relationships. The arrangement, Ixodida+Holothyrida+Opilioacariformes, however, may be an artefact of long-branch attraction since relative-rate tests showed that the Mesostigmata have significantly faster rates of nucleotide substitution than other parasitiform mites. Thus, the fast rates of nucleotide substitution of the Mesostigmata might have caused the Mesostigmata to be attracted to the outgroup in our trees. We tested the hypothesis that the high rate of nucleotide substitution in some mites was related to their short generation times. The Acari species that have high nucleotide substitution rates usually have short generation times; these mites also tend to be more active and thus have higher metabolic rates than other mites. Therefore, more than one factor may affect the rate of nucleotide substitution in these mites.