918 resultados para Arthritis Research UK (ARUK)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The authors are grateful for the input of Professor Blair Smith (University of Dundee): his counsel early in the project, and his advice and comments regarding the search strategy; and Professor Danielle van der Windt (Keele University) for helpful advice and comments. Funding The British Pain Society provided financial assistance to AF with the costs of this project. PC was partly supported by an Arthritis Research UK Primary Care Centre grant (reference: 18139).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding This work was funded by Arthritis Research UK (grants 17859, 17971, 19654), INNOCHEM EU FP6 (grant LSHB-CT-2005-51867), MRC (MR/K013076/1) and the William Harvey Research Foundation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgments This work was supported by Arthritis Research UK (Grant no. 19282). We are grateful to Dr. Nick Fluck for his invaluable support in recruiting patients for the study, and Mrs. Vivien Vaughan for her invaluable expertise in recruiting study participants and maintaining ethical documentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding The MUSICIAN trial was supported by an award from Arthritis Research UK, Chesterfield, UK. Grant number: 17292. The funding body approved the design of the study. They played no role in the collection, analysis, and interpretation of data or the writing of the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near MS4A4A, CD2AP, EPHA1 and CD33. Meta-analyses of this and a previously published GWAS revealed significant association at ABCA7 and MS4A, independent evidence for association of CD2AP, CD33 and EPHA1 and an opposing yet significant association of a variant near ARID5B. In this study, we genotyped five variants (in or near CD2AP, EPHA1, ARID5B, and CD33) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and APOE e4 dosage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS We acknowledge the data management support of Grampian Data Safe Haven (DaSH) and the associated financial support of NHS Research Scotland, through NHS Grampian investment in the Grampian DaSH. S.S. is supported by a Clinical Research Training Fellowship from the Wellcome Trust (Ref 102729/Z/13/Z). We also acknowledge the support from The Farr Institute of Health Informatics Research. The Farr Institute is supported by a 10-funder consortium: Arthritis Research UK, the British Heart Foundation, Cancer Research UK, the Economic and Social Research Council, the Engineering and Physical Sciences Research Council, the Medical Research Council, the National Institute of Health Research, the National Institute for Social Care and Health Research (Welsh Assembly Government), the Chief Scientist Office (Scottish Government Health Directorates) and the Wellcome Trust (MRC Grant Nos: Scotland MR/K007017/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding: British Women’s Heart and Health Study is funded by the Department of Health grant no. 90049 and the British Heart Foundation grant no. PG/09/022. British Regional Heart Study is supported by the British Heart Foundation (grant RG/ 13/16/30528). CB (COPDBEAT) received funding from the Medical Research Council UK (grant no. G0601369), CB (COPDBEAT) and AJW (UKCOPD) were supported by the National Institute for Health Research (NIHR Leicester Biomedical Research Unit). MB (COPDBEAT) received funding from the NIHR (grant no. PDF-2013-06-052). Hertfordshire Cohort Study received support from the Medical Research Council, Arthritis Research UK, the International Osteoporosis Foundation and the British Heart Foundation; NIHR Biomedical Research Centre in Nutrition, University of Southampton; NIHR Musculoskeletal Biomedical Research Unit, University of Oxford. Generation Scotland: Scottish Family Health Study is funded by the Chief Scientist Office, Scottish Government Health Directorates, grant number CZD/16/6 and the Scottish Funding Council grant HR03006. EU COPD Gene Scan is funded by the European Union, grant no. QLG1-CT-2001-01012. English Longitudinal Study of Aging is funded by the Institute of Aging, NIH grant No. AG1764406S1. GoDARTs is funded by the Wellcome Trust grants 072960, 084726 and 104970. MDT has been supported by MRC fellowship G0902313. UK Biobank Lung Exome Variant Evaluation study was funded by a Medical Research Council strategic award to MDT, IPH, DPS and LVW (MC_PC_12010)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements The authors would like to thank Dr Marius Sudol for the hYAP plasmids (obtained through Addgene), Dr Pete Zammit for the pMSCV-IRES-eGFP plasmid, Dr Robert Judson for subcloning the hYAP cDNAs into the pMSCV-IRES-eGFP plasmid, Dr Lynda Erskine for the provision of mouse embryo samples, and Professor Jimmy Hutchison and the Orthopaedics Department at the Aberdeen Royal Infirmary for the provision of human tissue samples. The authors are also grateful to Denise Tosh and Susan Clark for excellent technical support. This work was funded by Arthritis Research UK (grant 19429).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements The authors would like to thank Dr Marius Sudol for the hYAP plasmids (obtained through Addgene), Dr Pete Zammit for the pMSCV-IRES-eGFP plasmid, Dr Robert Judson for subcloning the hYAP cDNAs into the pMSCV-IRES-eGFP plasmid, Dr Lynda Erskine for the provision of mouse embryo samples, and Professor Jimmy Hutchison and the Orthopaedics Department at the Aberdeen Royal Infirmary for the provision of human tissue samples. The authors are also grateful to Denise Tosh and Susan Clark for excellent technical support. This work was funded by Arthritis Research UK (grant 19429).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T follicular helper (Tfh) cells support differentiation of B cells to plasma cells and high affinity antibody production in germinal centers (GC) and Tfh differentiation requires the function of B cell lymphoma 6 (Bcl6). We have now discovered that early growth response gene (Egr) 2 and 3 directly regulate the expression of Bcl6 in Tfh cells which is required for their function in regulation of GC formation. In the absence of Egr2 and 3, the expression of Bcl6 in Tfh cells is defective leading to impaired differentiation of Tfh cells resulting in a failure to form GCs following virus infection and defects in production of anti-viral antibodies. Enforced expression of Bcl6 in Egr2/3 deficient CD4 T cells partially restored Tfh differentiation and GC formation in response to virus infection. Our findings demonstrate a novel function of Egr2/3 which is important for Tfh cell development and Tfh cell mediated B cell immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Juvenile idiopathic arthritis (JIA) is a heterogeneous disease characterized by chronic joint inflammation of unknown cause in children. JIA is an autoimmune disease and small numbers of auto-antibodies have been reported in JIA patients. The identification of antibody markers could improve the existing clinical management of patients. Methods A pilot study was performed on the application of a high-throughput platform, nucleic acid programmable protein arrays (NAPPA), to assess the levels of antibodies present in the systemic circulation and synovial joint of a small cohort of juvenile arthritis patients. Plasma and synovial fluid from ten JIA patients was screened for antibodies against 768 proteins on NAPPA. Results Quantitative reproducibility of NAPPA was demonstrated with >0.95 intra- and inter- array correlations. A strong correlation was also observed for the levels of antibodies between plasma and synovial fluid across the study cohort (r=0.96). Differences in the levels of 18 antibodies were revealed between sample types across all patients. Patients were segregated into two clinical subtypes with distinct antibody signatures by unsupervised hierarchical cluster analysis. Conclusions NAPPA provides a high-throughput quantitatively reproducible platform to screen for disease specific autoantibodies at the proteome level on a microscope slide. The strong correlation between the circulating antibody levels and those of the inflamed joint represents a novel finding and provides confidence to use plasma for discovery of autoantibodies in JIA, thus circumventing the challenges associated with joint aspiration. We expect that autoantibody profiling of JIA patients on NAPPA could yield antibody markers that can act as criteria to stratify patients, predict outcomes and understand disease etiology at the molecular level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Juvenile idiopathic arthritis (JIA) is the most common rheumatological disease of childhood with a prevalence of around 1 in 1000. Without appropriate treatment it can have devastating consequences including permanent disability from joint destruction and growth deformities. Disease aetiology remains unknown. Investigation of disease pathology at the level of the synovial membrane is required if we want to begin to understand the disease at the molecular and biochemical level. The synovial membrane proteome from early disease-stage, treatment naive JIA patients was compared between polyarticular and oligoarticular subgroups.

Methods: Protein was extracted from 15 newly diagnosed, treatment naive JIA synovial membrane biopsies and separated by two dimensional fluorescent difference in-gel electrophoresis. Proteins displaying a two-fold or greater change in expression levels between the two subgroups were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry with expression further verified by Western blotting and immunohistochemistry.

Results: Analysis of variance analysis (P <= 0.05) revealed 25 protein spots with a two-fold or greater difference in expression levels between polyarticular and oligoarticular patients. Hierarchical cluster analysis with Pearson ranked correlation revealed two distinctive clusters of proteins. Some of the proteins that were differentially expressed included: integrin alpha 2b (P = 0.04); fibrinogen D fragment (P =0.005); collagen type VI (P = 0.03); fibrinogen gamma chain (P = 0.05) and peroxiredoxin 2 (P = 0.02). The identified proteins are involved in a number of different processes including platelet activation and the coagulation system.

Conclusions: The data indicates distinct synovial membrane proteome profiles between JIA subgroups at an early stage in the disease process. The identified proteins also provide insight into differentially perturbed pathways which could influence pathological events at the joint level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Methotrexate (MTX) is a cornerstone of treatment in a wide variety of inflammatory conditions, including juvenile idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM). However, owing to its narrow therapeutic index and the considerable interpatient variability in clinical response, monitoring of adherence to MTX is important. The present study demonstrates the feasibility of using methotrexate polyglutamates (MTXPGs) as a biomarker to measure adherence to MTX treatment in children with JIA and JDM.
Methods: Data were collected prospectively from a cohort of 48 children (median age 11.5 years) who received oral or subcutaneous (SC) MTX therapy for JIA or JDM. Dried blood spot samples were obtained from children by finger pick at the clinic or via self- or parent-led sampling at home, and they were analysed to determine the variability in MTXPG concentrations and assess adherence to MTX therapy.
Results: Wide fluctuations in MTXPG total concentrations (>2.0-fold variations) were found in 17 patients receiving stable weekly doses of MTX, which is indicative of nonadherence or partial adherence to MTX therapy. Age (P = 0.026) and route of administration (P = 0.005) were the most important predictors of nonadherence to MTX treatment. In addition, the study showed that MTX dose and route of administration were significantly associated with variations in the distribution of MTXPG subtypes. Higher doses and SC administration of MTX produced higher levels of total MTXPGs and selective accumulation of longer-chain MTXPGs (P < 0.001 and P < 0.0001, respectively).
Conclusions: Nonadherence to MTX therapy is a significant problem in children with JIA and JDM. The present study suggests that patients with inadequate adherence and/or intolerance to oral MTX may benefit from SC administration of the drug. The clinical utility of MTXPG levels to monitor and optimise adherence to MTX in children has been demonstrated.Trial Registration: ISRCTN Registry identifier: ISRCTN93945409 . Registered 2 December 2011.