992 resultados para Artemisia annua L. artemisinin
Resumo:
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua - including artemisinin itself may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert thi allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.
Resumo:
Artemisia annua tem sido utilizada tradicionalmente para o tratamento de malária e febre na China devido à presença do princÃpio ativo, artemisinina. O presente trabalho avaliou a atividade central de do óleo essencial obtido por hidrodestilação e do extrato etanólico bruto de folhas frescas de A. annua em modelo in vivo como parte de um screening farmacológico dessa espécie. Sono induzido por pentobarbital, nado forçado e o ensaio de campo aberto são modelos de estudo conhecidos para o estudo de fármacos sobre depressão induzida. A administração do óleo essencial ou extrato bruto etanólico de A. annua aumentaram o tempo de imobilidade no teste do nado forçado. Por outro lado, diminuÃram outros parâmetros no campo aberto, como ambulação, exploração, o ato de lamber as patas ou se lamber. Ambos produtos aumentaram o tempo de sono induzido por pentobarbital, com o óleo essencial apresentando um efeito superior ao do extrato. Pela análise dos resultados, é possÃvel sugerir que tanto o extrato bem como o óleo essencial podem atuar como depressores do Sistema Nervoso Central (SNC).
Resumo:
A atividade de extratos vegetais sobre parasitas pode indicar grupos de substâncias de uso potencial no controle de Rhipicephalus (Boophilus) microplus. O objetivo do presente estudo foi investigar a ação in vitro de extratos de Artemisia annua sobre esta espécie. A concentração das lactonas sesquiterpênicas artemisinina e deoxiartemisinina presentes nos extratos vegetais, foi quantificada via cromatografia lÃquida de alta eficiência. Quatro extratos produzidos a partir do extrato bruto concentrado (EBC) foram avaliados sobre larvas pela metodologia do papel impregnado, com leitura após 24 horas de incubação. As fêmeas ingurgitadas foram imersas por cinco minutos no EBC e nos seus quatro extratos derivados, e incubadas para posterior análise dos parâmetros biológicos. Os extratos não tiveram eficácia sobre as larvas nas concentrações avaliadas (de 3,1 a 50 mg.mL-1). O EBC apresentou melhor eficácia sobre as fêmeas ingurgitadas (CE 50 de 130,6 mg.mL-1 e CE 90 de 302,9 mg.mL-1) que os extratos derivados. Esses resultados tendem a confirmar que a ação da artemisinina sobre as fêmeas ingurgitadas de R. (B.) microplus estaria condicionada à sua ingestão através do sangue. Nesse caso, os métodos in vitro seriam inadequados para a efetiva avaliação da ação de A. annua R.(B.) microplus.
Resumo:
Leaves of Artemisia annua L. are a plentiful source of artemisinin, a drug with proven effectiveness against malaria. The aim of this study was to classify the photosynthetic mechanism of A. annua through studies of the carbon isotope composition (δ 13C) and the leaf anatomy. A. annua presented a δ 13C value of - 31.76 ± 0.07, which characterizes the plants as a typical species of the C3 photosynthethic mechanism, considering that the average δ 13C values for C3 and C4 species are -28 and -14, respectively. The leaf anatomy studies were consistent with the δ 13C results, where, in spite of the existence of parenchymatic cells forming a sheath surrounding the vascular tissue, the cells do not contain chloroplasts or starch. This characteristic is clearly different from that of the Kranz anatomy found in C4 species.
Resumo:
The objective of this work was to evaluate the effect of different artemisinin concentrations in the flowering induction of A. annua. Two genotypes of A. annua (CPQBA 239x1V and 3MxPOP) were atomized with four different artemisinin concentrations (0, 500, 5000, and 10000 mg L-1). The application of artemisinin didn't induce the flowering of both genotypes tested, in none of the used concentrations.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
The species Artemisia annua L. (Asteraceae) is native to China and has artemisinin as its main active component, substance that is considered a potent antimalarial drug. With the increased interest in natural active principles, studies related to post-harvest and storage of vegetable material become important for better conservation of its phytotherapic properties. Therefore, the present study had as objectivedefine the best storage conditions to preserve and keep the quality of phytotherapic drugs. Leaves of A. annua dried were stored for six months in polyethylene bags wrapped in Kraft paper and packed in four treatments: at ambient condition, refrigerated at 4 ± 2 oC, using normal packing, and using vacuum packing. Samples were taken for microbiological, moisture content, and level of artemisinin analyses before the experiment begun and at 30, 90, 120 and 180 days. The results of microbiological tests showed no significant contamination, as well as the moisture content of the stored (biological) material, which remain between 5% and 10%, keeping within acceptable parameters. The ambient without vacuum treatment (SVA) was the treatment that better maintained the sample stability during 180 days, however, the refrigerated without vacuum (SVR) showed greater efficiency to conserve the content of artemisinin.