21 resultados para Arsenopyrite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the role of the mineral-adapted acidiphilic microorganism. Acidithiobacillus ferrooxidans in the beneficiation of arsenopyrite-containing multisulfides (pyrite and chalcopyrite) and the bioremediation of the resulting arsenical waste water. It was found that adaptation to minerals alters the surface properties of the microorganism. Bacterial adaptation to arsenopyrite and controlled bacterial adhesion to mineral surfaces lead to selectivity in arsenopyrite separation. Bioremoval of arsenic ions (both arsenite and arsenate ions) by Acidithiobacillus ferrooxidans is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the oxidizing action of a native strain type A. ferrooxidans on a sulphide containing a predominance of arsenopyrite and pyrite has been evaluated. Incubation of the A. ferrooxidans strain in flasks containing 200 mL of T&K medium with the ore (particle size of 106 mu m) at pulp density 8% (w/v) at 35 degrees C on a rotary shaker at 200 rpm resulted in preferential oxidation of the arsenopyrite and the mobilization of 88% of the arsenic in 25 days. Mineralogical characterization of the residue after biooxidation was carried out with FTIR. XRD and SEM/XEDS techniques. An in situ oxidation of the arsenopyrite is suggested on the basis of the frequent appearance of jarosite pseudomorph replacing arsenopyrite, in which the transformations Fe(2+) -> Fe(3+), S(-2) -> S(+6) and As(-1) -> As(+3) -> As(+5) occur for the most part without formation of soluble intermediates, resulting in a type of jarosite that typically contains high concentrations of arsenic (type A-jarosite). However, during pyrite oxidation, dissolution of the constituent Fe and S predominates, which is evidenced by corrosion of pyrite particles with formation of pits, generating a type of jarosite with high quantities of K (type B-jarosite). Lastly, a third type of jarosite (type C-jarosite) also precipitated forming a thin film that covered the grains of pyrite principally. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic voltammograms and capacitance measurements are presented to characterize the mineral response at relatively moderate environmental conditions, pH 4.5 and T = 25degreesC. The experiments involve examining the rates of oxidation and the surface morphology of arsenopyrite, which is oxidized abiotically. The semiconducting properties of the mineral have been investigated in attempt to gain additional information of FeAsS dissolution behavior in acidic solutions at potentials close to the open circuit potential of the mineral. A mechanistic pathway for the anodic dissolution of arsenopyrite in open circuit conditions is also suggested. At high overpotentials, anodic reactions produce mainly sulfate and arsenate ions and may be described as hole limited. The reduction of orpiment-like compounds at potentials more negative than the open circuit potential is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presently non-commercial occurrences of Mississippi Valley-type ore assemblages in the Middle Silurian strata of the Niagara Peninsula have been studied. Based on this detailed study, a new poly-stage genetic model is proposed which relates ore mineralization in carbonate environments to the evolution of the sedimentary basin. Sulphide ore mineralization occurred during two episodes: 1. During the late diagenesis stage, which is characterized by compaction-maturation of the sediments, the initial mineralization took place by upward and outward movement of connate waters. Metals were probably supplied from all the sediments regardless of their specific lithologies. However, clay minerals were possibly the main contributors. The possible source of sulphur was from petroleum-type hydrocarbons presently mixed with the sediments at the site of ore deposition. Evidence for this is the fact that the greatest abundance of ore minerals is in petroliferous carbonates. The hydrocarbons probably represent liquids remaining after upward migration to the overlying Guelph-Salina reservoirs. The majority of sphalerite and galena formed during this period, as well as accessory pyrite, marcasite, chalcopyrite, chalcocite, arsenopyrite, and pyrrhotite; and secondary dolomite, calcite, celestite, and gypsum. 2. During the presently ongoing surface erosion and weathering phase, which is marked by the downward movement of groundwater, preexisting sulphides were probably remobilized, and trace amounts of lead and zinc were leached from the host material, by groundwaters. Metal sulphides precipitated at, or below, the water table, or where atmospheric oxygen could raise the Eh of groundwaters to the point where soluble metal complexes are unstable and native sulphur co-precipitates with sphalerite and galena. This process, which can be observed today, also results in the transport and deposition of the host rock material. Breakdown of pre-existing sulphide and sulphate, as well as hydrocarbon present in the host rock, provided sulphur necessary for sulphide precipitation. The galena and sphalerite are accompanied by dolomite, calcite, gypsum, anglesite, native sulphur and possibly zincite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bendadaite, ideally Fe(2+)Fe(2)(3+)(AsO(4))(2)(OH)(2 center dot).4H(2)O, is a new member of the arthurite group It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada. central Portugal (type locality) Co-type locality is the granite pegmatite of La via do Almerindo (Almerindo mine), Linopolis, Divmo das Laranjeiras county, Minas Gerais, Brazil Further localities are the Vein Negra mine, Copiapo province, Chile, mid-East, Bou Azzer district, Morocco, and Para Inferida yard, Fenugu Sibirt mine, Gonnosfanadiga, Medio Campidano Province, Sardinia. Italy Type bendadaite occurs as blackish green to dark brownish tufts (<0 1 mm long) and flattened radiating aggregates. in intimate association with an intermediate member of the scorodite-mansfieldite series It is monoclinic. space group P2(l/c). with a = 10 239(3) angstrom. b = 9 713(2) angstrom, c = 5 552(2) angstrom. beta = 94 11(2)degrees. = 550 7(2) angstrom(3). Z = 2 Electron-microprobe analysis yielded (wt %). CaO 0 04, MnO 0 03. CuO 006, ZnO 004. Fe(2)O(3) (total) 43 92, Al(2)O(3) 115. SnO(2) 0 10, As(2)O(5) 43 27. P(2)O(5) 1 86, SO(3) 0.03 The empirical formula is (Fe(0 52)(2+)Fe(0 32)(3+)rectangle(0 16))(Sigma 1 00)(Fe(1 89)(3+)Al(0 11))(Sigma 2 00)(As(1 87)P(0 13))(Sigma 2 00)O(8)(OH)(2 00) 4H(2)O based. CM 2(As,P) and assuming ideal 80, 2(OH), 4H2O and complete occupancy of the ferric on site by Fe(3+) and Al Optically, bendadaite is biaxial, positive, 2V(est) = 85+/-4 degrees, 2V(eale) = 88 degrees, with alpha 1 734(3). 13 1 759(3), 7 1 787(4) Pleochrosim is medium strong X pale reddish brown. Y yellowish brown, Z dark yellowish brown. absorption Z > V > X, optical dispersion weak, r > v. Optical axis plane Is parallel to (010), with X approximately parallel to a and Z nearly parallel to c Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent It is brittle, shows irregular fracture and a good cleavage parallel to 1010} 3 15 0 10 g/cm(3), 3 193 g/cm3 (for the empirical formula) The five strongest powder diffraction lines [d in angstrom (I)(hkl] are 10 22 (10)(100), 7 036 (8)(110), 4 250 (5)(11 I), 2 865 (4)(311), 4 833 (3)(020,011) The d spacings are very similar to those of its Zn analogue, ojelaite The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe(0 95)(2+)rectangle(0 05))(Sigma 1 00)(Fe(1 80)(3+)Al(0 20))Sigma(2 00)(As(1 48)P(0 52))(Sigma 2 00)O(8)) (OH)(2) 4H(2)O (R = 16%) and confirms an arthurite-type atomic arrangement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study area is includes in the geological context of Arenópolis Magmatic Arc, a region where there are neoproterozoic associations of granodioritic and tonalitic composiotion. (Ortogneisses of the western Goiás) and sequences metavolcanic-sedimentary (Jaupaci Metavolcanic-sedimentary Sequence ). In the mapped area, both units are covered by a cover-laterite. The Ortogneisses from Goiás West consist of a source granodioritic gneisses, corresponding to the Biotite granodiorite gneisse, and also by tonalitic gneiss composition corresponding to Metatonalit. The Jaupaci Metavolcanic-sedimentary Sequence is formed by Chlorite Schist (Metabasalt), Biotite Schist (Metadacite) and Sericite Schist (Metarhyolite), and even intrusions Sin/Tardi e Post Tectonic, granite to diorite composition (Diorites), and alson tonalitic (Bacilandia Tonalite). Post tectonic intrusions are observed, wich were Hornblend Diorite Porphyry and Lamprophyres, Structural analysis allowed the identification of three deformational events, Dn-1, Dn and Post-Dn. The first event is associated with a bygone foliation, lineation which generates an intersectional event, generating the foliation Sn, this being the most important structure in the study area, generating even the type mineral lineation and stretch. The last deformational event is characterized by folds on different scales, affecting the Sn foliation. The rocks of the region have features s active hydrothermal and regional metamorphism, and are composed os assembly indicative of mineralogical facies metamorphism Green Schist, in chlotite zone, with evidence of retro metamorphism. Locally there are sulfides as pyrite, arsenopyrit and pyrhotite, and te mineralization is associated with the arsenopyrite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ore investigated in this thesis is a zinc-copper-lead ore. Microscopic analysis of this complex sulphide ore showed it to contain pyrite, sphalerite, arsenopyrite, galena, chalcopyrite, tetrahedrite, and covellite, with quartz as the gangue constituent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite - accompanied by quartz, adularia, sericite, + (tourmaline, chlorite, carbonates, graphite), as main gangue minerals - with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrotherreal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El yacimiento de Pasto Bueno se localiza en el extremo nordeste del Batolito de la Cordillera Blanca, comprende diversas vetas, generalmente subverticales, asociadas al stock cuarzomonzonitico de Consuzo, datado como Terciario Superior, que intruye a las pizarras de la fm. Chicama y cuarcitas de la fm. Chimu. Las principales vetas discurren con direccion N-S cortando al stock, aunque tambien existen sistemas NE-SW asi como NW-SE encajados sobre las rocas metamorficas. La mineralogia de mena reconocida comprende wolframita (hubnerita), tetraedrita/tenantita, esfalerita y galena, en una ganga de cuarzo, fluorita, sericita, pirita y carbonatos, ademas de molibdenita, calcopirita, bornita, arsenopirita, enargita (luzonita), stolzita, scheelita, zinnwaldita, topacio, tungstita y arsenico nativo. Estudios previos han caracterizado Pasto Bueno como un yacimiento con una gran componente de greisen, con una evolucion de las vetas desde un episodio temprano esteril de 400 oC, depositando la mineralizacion economica en torno a los 220-250 oC y con un evento postumo de 175-220 oC rico en CO2. La precipitacion de la wolframita se produjo a partir de un fluido netamente hidrotermal, sin embargo, dicha precipitacion estuvo controlada por el aporte al sistema de aguas externas meteoricas y/o metamorficas. El trabajo llevado a cabo ha consistido en la realizacion de un estudio microtermometrico de las 3 principales estructuras del distrito: Consuelo, Alonso-Fenix y Chabuca, para caracterizar la evolucion del fluido mineralizador desde el stock (veta Consuelo) hacia las rocas metasedimentarias de las fm. Chicama y Chimu (manto Alonso-Fenix y veta Chabuca). Para ello se realizo un muestreo sobre el evento principal de mineralizacion. Dichas muestras se sometieron a un estudio petrografico de lamina gruesa para seleccionar las muestras optimas para el posterior estudio microtermometrico. Previamente a la obtencion de las medidas de temperatura de fusion del hielo (criotermometria) y de homogenizacion del fluido; se realizo un estudio de petrografia de inclusiones fluidas para caracterizarlas y seleccionar las representativas. La interpretacion de los resultados ha permitido confirmar la existencia de un episodio previo de alta temperatura, superior a 282 oC y un evento mineralizador con temperaturas en torno a los 200-240 oC. Sin embargo, las salinidades obtenidas son mucho menores que las previamente publicadas, en torno al 5 % peso eq. NaCl, frente a 11-17 % peso eq. NaCl. Tambien se ha observado un fluido postumo rico en CO2, pero de temperatura superior, en torno a los 270 oC. Los gradientes isotermicos muestran dos focos para dichos fluidos hidrotermales: el primero asociado al stock en la veta Consuelo, y el segundo en la veta Chabuca, asociado a la zona de cabalgamiento de las pizarras de la fm. Chicama sobre las cuarcitas de la fm. Chimu. Este segundo foco puede corresponder con los aportes externos de aguas metamorficas. Para finalizar, se dan una serie de pautas para guiar las futuras exploraciones en el yacimiento. ABSTRACT The Pasto Bueno deposit is located at the northeastern end of the Cordillera Blanca Batholith. It comprises several veins, generally subvertical, associated with the quartz-monzonite stock of Consuzo, dated as Tertiary, which intrudes the Chicama fm. slates and the Chimu fm. quartzites. The main veins trend N-S cutting the stock, although there are also NE-SW and NWSE systems, hosted by the metamorphic rocks. The ore mineralogy comprises wolframite (hubnerite), tetrahedrite/tennantite, sphalerite and galena in a gangue of quartz, fluorite, sericite, pyrite and carbonates, and minor molybdenite, chalcopyrite, bornite, arsenopyrite, enargite (luzonite), stolzite, scheelite, zinnwaldite, topaz, tungstite and native arsenic. Previous studies have characterized Pasto Bueno as a deposit with a large component of greisen, with an evolution of the veins from an early barren 400 oC event , followed by economic mineralization of about 220-250 °C and a late event of 175 -220 oC rich in CO2. Wolframite precipitation occurred from a purely hydrothermal fluid; however, this precipitation was controlled by an external flux of meteoric and/or metamorphic waters. Microthermometric studies of the 3 main structures of the district (Consuelo, Alonso-Fenix and Chabuca veins) have been carried out to depict the evolution of the mineralizing fluid coming from the stock (Consuelo vein) into the metasedimentary rocks of the Chimu and Chicama fm. (Alonso-Fenix and Chabuca veins). The sampling was performed over the main event of mineralization. These samples were subject to a quick plate petrography study in order to select the optimal samples for further microthermometry studies. Before the freezing/heating measures, a fluid inclusion petrography study was done to characterize and select the representative F.I. Interpretation of results has confirmed the existence of a previous episode of higher temperature, over 282 °C, and a mineralizing event with temperatures of about 200-240 °C. However, obtained salinities, about 5 wt% NaCl equivalents, are much lower than those previously reported, about 11-17 wt% NaCl equivalents. A last fluid, rich in CO2, but of higher temperature, about 270 oC, has been characterized. Isothermal gradients show two foci for the hydrothermal fluids: the first one associated to the Consuzo stock as shown in the Consuelo vein, and the second one related to the thrust fault which places the Chicama fm. slates over the Chimu fm. quartzites in the Chabuca vein area. This second focus may correspond to an external input of metamorphic waters. Finally, some guidelines have been given to guide future explorations.