954 resultados para Arrow’s theorem
Resumo:
This paper, which is to be published as a chapter in the Oxford Handbook of Political Economy, provides an introduction to social-choice theory with interpersonal comparisons of well-being. We argue that the most promising route of escape from the negative conclusion of Arrow’s theorem is to use a richer informational environment than ordinal measurability and the absence of interpersonal comparability of well-being. We discuss welfarist social evaluation (which requires that the levels of individual well-being in two alternatives are the only determinants of their social ranking) and present characterizations of some important social-evaluation orderings.
Resumo:
In the past quarter century, there has been a dramatic shift of focus in social choice theory, with structured sets of alternatives and restricted domains of the sort encountered in economic problems coming to the fore. This article provides an overview of some of the recent contributions to four topics in normative social choice theory in which economic modelling has played a prominent role: Arrovian social choice theory on economic domains, variable-population social choice, strategy-proof social choice, and axiomatic models of resource allocation.
Resumo:
This paper reads season 1 of the critically-acclaimed Canadian television series “Slings & Arrows” (2003). This six-episode series is set in a fictionalised version of the Stratford Festival, and tells the story of a plagued production of Shakespeare’s Hamlet. It follows the play’s rehearsal after the death of the festival’s artistic director; Geoffrey Tennant (himself a plagued Hamlet) takes over the role of director, and must face his past in order to produce a Hamlet that will save the festival, redeem his reputation, and repair his interpersonal relationships. Drawing on popular and theatrical understandings of Shakespeare’s play, the series negotiates tropes of metatheatre, filiality, cultural production and consumption, in order to demonstrate the ongoing relevance and legitimacy of “Shakespeare” in the twenty-first century. The “Slings & Arrows” narrative revolves around the doubled-plot of Hamlet and the experiences of the company mounting Hamlet. In quite obvious ways, the show thus thematises ways in which Shakespeare can be used to read one’s own life and world. In the broader sense, however, the show also offers theatre/performance as a catalyst for affect. In doing so, the show functions as a relatively straight adaptation of Hamlet, and a metatheatrical/metafictional commentary on the functions of Hamlet within contemporary culture. In Shakespeare’s play, the production of “The Mouse-Trap” proves, both to Hamlet and the audience, the legitimacy of the ghost’s claims. Similarly, in “Slings & Arrows”, the successful performance of Hamlet legitimises Geoffrey’s position as artistic director of the festival, and affirms for the viewer the value of Shakespearean production in contemporary culture. In each text, theatre/performance enables and legitimises a son carrying out a dead father’s wishes in order to restore or reproduce socio-cultural order. The metatheatrics of these gestures engage the reader/viewer in a self-reflexive process whereby the ‘value’ of theatre is thematised and performed, and the consumer is positioned as the arbiter and agent of that value: complicit in its production even as they are the site of its consumption.
Resumo:
Volume measurements are useful in many branches of science and medicine. They are usually accomplished by acquiring a sequence of cross sectional images through the object using an appropriate scanning modality, for example x-ray computed tomography (CT), magnetic resonance (MR) or ultrasound (US). In the cases of CT and MR, a dividing cubes algorithm can be used to describe the surface as a triangle mesh. However, such algorithms are not suitable for US data, especially when the image sequence is multiplanar (as it usually is). This problem may be overcome by manually tracing regions of interest (ROIs) on the registered multiplanar images and connecting the points into a triangular mesh. In this paper we describe and evaluate a new discreet form of Gauss’ theorem which enables the calculation of the volume of any enclosed surface described by a triangular mesh. The volume is calculated by summing the vector product of the centroid, area and normal of each surface triangle. The algorithm was tested on computer-generated objects, US-scanned balloons, livers and kidneys and CT-scanned clay rocks. The results, expressed as the mean percentage difference ± one standard deviation were 1.2 ± 2.3, 5.5 ± 4.7, 3.0 ± 3.2 and −1.2 ± 3.2% for balloons, livers, kidneys and rocks respectively. The results compare favourably with other volume estimation methods such as planimetry and tetrahedral decomposition.
Resumo:
This paper discusses how fundamentals of number theory, such as unique prime factorization and greatest common divisor can be made accessible to secondary school students through spreadsheets. In addition, the three basic multiplicative functions of number theory are defined and illustrated through a spreadsheet environment. Primes are defined simply as those natural numbers with just two divisors. One focus of the paper is to show the ease with which spreadsheets can be used to introduce students to some basics of elementary number theory. Complete instructions are given to build a spreadsheet to enable the user to input a positive integer, either with a slider or manually, and see the prime decomposition. The spreadsheet environment allows students to observe patterns, gain structural insight, form and test conjectures, and solve problems in elementary number theory.
Resumo:
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen, Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation for both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases. © 2008 American Institute of Physics.
Resumo:
Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both 't Hooft-Veltman and Bardeen prescriptions for γ5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect to the renormalizability of supersymmetric models.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
An existence theorem is obtained for a generalized Hammerstein type equation
Resumo:
In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.
Resumo:
Let X be a normal projective threefold over a field of characteristic zero and vertical bar L vertical bar be a base-point free, ample linear system on X. Under suitable hypotheses on (X, vertical bar L vertical bar), we prove that for a very general member Y is an element of vertical bar L vertical bar, the restriction map on divisor class groups Cl(X) -> Cl(Y) is an isomorphism. In particular, we are able to recover the classical Noether-Lefschetz theorem, that a very general hypersurface X subset of P-C(3) of degree >= 4 has Pic(X) congruent to Z.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.