985 resultados para Array design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aeromonas hydrophila and Vibrio fluvialis are the causative agents of a serious haemorrhagic septicaemia that affects a wide range of freshwater fish in China. In order to develop a bivalent anti-A. hydrophila and anti-V. fluvialis formalin-killed vaccine to prevent this disease, an orthogonal array design (OAD) method was used to optimize the production conditions, using three factors, each having three levels. The effects of these factors and levels on the relative per cent survival for crucian carp were quantitatively evaluated by analysis of variance. The final optimized formulation was established. The data showed that inactivation temperature had a significant effect on the potency of vaccine, but formalin concentration did not. The bivalent vaccine could elicit a strong humoral response in crucian carp (Carassius auratus L.) against both A. hydrophila and V. fluvialis simultaneously, which peaked at 3 or 5 weeks respectively. Antibody titres remained high until week 12, the end of the experiment, after a single intraperitoneal injection. The verification experiment confirmed that an optimized preparation could provide protection for fish at least against A. hydrophila infection, and did perform better than the non-optimized vaccine judged by the antibody levels and protection rate, suggesting that OAD is of value in the development of improved vaccine formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-dot Cellular Automata (QCA) technology is a promising potential alternative to CMOS technology. To explore the characteristics of QCA and suitable design methodologies, digital circuit design approaches have been investigated. Due to the inherent wire delay in QCA, pipelined architectures appear to be a particularly suitable design technique. Also, because of the pipeline nature of QCA technology, it is not suitable for complicated control system design. Systolic arrays take advantage of pipelining, parallelism and simple local control. Therefore, an investigation into these architectures in QCA technology is provided in this paper. Two case studies, (a matrix multiplier and a Galois Field multiplier) are designed and analyzed based on both multilayer and coplanar crossings. The performance of these two types of interconnections are compared and it is found that even though coplanar crossings are currently more practical, they tend to occupy a larger design area and incur slightly more delay. A general semi-conductor QCA systolic array design methodology is also proposed. It is found that by applying a systolic array structure in QCA design, significant benefits can be achieved particularly with large systolic arrays, even more so than when applied in CMOS-based technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Affymetrix GeneChip (R) arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip (R) arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip (R) arrays whose probes are localised primarily in 39 exons. Plant whole-transcript (WT) GeneChip (R) arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip (R) Brassica Exon 1.0 ST Array is a 5 mu M feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5), with <= 98 sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18), and categorisation by Gene Ontologies (GO) based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los arrays de ranuras son sistemas de antennas conocidos desde los años 40, principalmente destinados a formar parte de sistemas rádar de navíos de combate y grandes estaciones terrenas donde el tamaño y el peso no eran altamente restrictivos. Con el paso de los años y debido sobre todo a importantes avances en materiales y métodos de fabricación, el rango de aplicaciones de este tipo de sistemas radiantes creció en gran medida. Desde nuevas tecnologías biomédicas, sistemas anticolisión en automóviles y navegación en aviones, enlaces de comunicaciones de alta tasa binaria y corta distancia e incluso sistemas embarcados en satélites para la transmisión de señal de televisión. Dentro de esta familia de antennas, existen dos grupos que destacan por ser los más utilizados: las antennas de placas paralelas con las ranuras distribuidas de forma circular o espiral y las agrupaciones de arrays lineales construidos sobre guia de onda. Continuando con las tareas de investigación desarrolladas durante los últimos años en el Instituto de Tecnología de Tokyo y en el Grupo de Radiación de la Universidad Politécnica de Madrid, la totalidad de esta tesis se centra en este último grupo, aunque como se verá se separa en gran medida de las técnicas de diseño y metodologías convencionales. Los arrays de ranuras rectas y paralelas al eje de la guía rectangular que las alimenta son, sin ninguna duda, los modelos más empleados debido a la fiabilidad que presentan a altas frecuencias, su capacidad para gestionar grandes cantidades de potencia y la sencillez de su diseño y fabricación. Sin embargo, también presentan desventajas como estrecho ancho de banda en pérdidas de retorno y rápida degradación del diagrama de radiación con la frecuencia. Éstas son debidas a la naturaleza resonante de sus elementos radiantes: al perder la resonancia, el sistema global se desajusta y sus prestaciones degeneran. En arrays bidimensionales de slots rectos, el campo eléctrico queda polarizado sobre el plano transversal a las ranuras, correspondiéndose con el plano de altos lóbulos secundarios. Esta tesis tiene como objetivo el desarrollo de un método sistemático de diseño de arrays de ranuras inclinadas y desplazadas del centro (en lo sucesivo “ranuras compuestas”), definido en 1971 como uno de los desafíos a superar dentro del mundo del diseño de antennas. La técnica empleada se basa en el Método de los Momentos, la Teoría de Circuitos y la Teoría de Conexión Aleatoria de Matrices de Dispersión. Al tratarse de un método circuital, la primera parte de la tesis se corresponde con el estudio de la aplicabilidad de las redes equivalentes fundamentales, su capacidad para recrear fenómenos físicos de la ranura, las limitaciones y ventajas que presentan para caracterizar las diferentes configuraciones de slot compuesto. Se profundiza en las diferencias entre las redes en T y en ! y se condiciona la selección de una u otra dependiendo del tipo de elemento radiante. Una vez seleccionado el tipo de red a emplear en el diseño del sistema, se ha desarrollado un algoritmo de cascadeo progresivo desde el puerto alimentador hacia el cortocircuito que termina el modelo. Este algoritmo es independiente del número de elementos, la frecuencia central de funcionamiento, del ángulo de inclinación de las ranuras y de la red equivalente seleccionada (en T o en !). Se basa en definir el diseño del array como un Problema de Satisfacción de Condiciones (en inglés, Constraint Satisfaction Problem) que se resuelve por un método de Búsqueda en Retroceso (Backtracking algorithm). Como resultado devuelve un circuito equivalente del array completo adaptado a su entrada y cuyos elementos consumen una potencia acorde a una distribución de amplitud dada para el array. En toda agrupación de antennas, el acoplo mutuo entre elementos a través del campo radiado representa uno de los principales problemas para el ingeniero y sus efectos perjudican a las prestaciones globales del sistema, tanto en adaptación como en capacidad de radiación. El empleo de circuito equivalente se descartó por la dificultad que suponía la caracterización de estos efectos y su inclusión en la etapa de diseño. En esta tesis doctoral el acoplo también se ha modelado como una red equivalente cuyos elementos son transformadores ideales y admitancias, conectada al conjunto de redes equivalentes que representa el array. Al comparar los resultados estimados en términos de pérdidas de retorno y radiación con aquellos obtenidos a partir de programas comerciales populares como CST Microwave Studio se confirma la validez del método aquí propuesto, el primer método de diseño sistemático de arrays de ranuras compuestos alimentados por guía de onda rectangular. Al tratarse de ranuras no resonantes, el ancho de banda en pérdidas de retorno es mucho mas amplio que el que presentan arrays de slots rectos. Para arrays bidimensionales, el ángulo de inclinación puede ajustarse de manera que el campo quede polarizado en los planos de bajos lóbulos secundarios. Además de simulaciones se han diseñado, construido y medido dos prototipos centrados en la frecuencia de 12GHz, de seis y diez elementos. Las medidas de pérdidas de retorno y diagrama de radiación revelan excelentes resultados, certificando la bondad del método genuino Method of Moments - Forward Matching Procedure desarrollado a lo largo de esta tésis. Abstract The slot antenna arrays are well known systems from the decade of 40s, mainly intended to be part of radar systems of large warships and terrestrial stations where size and weight were not highly restrictive. Over the years, mainly due to significant advances in materials and manufacturing methods, the range of applications of this type of radiating systems grew significantly. From new biomedical technologies, collision avoidance systems in cars and aircraft navigation, short communication links with high bit transfer rate and even embedded systems in satellites for television broadcast. Within this family of antennas, two groups stand out as being the most frequent in the literature: parallel plate antennas with slots placed in a circular or spiral distribution and clusters of waveguide linear arrays. To continue the vast research work carried out during the last decades in the Tokyo Institute of Technology and in the Radiation Group at the Universidad Politécnica de Madrid, this thesis focuses on the latter group, although it represents a technique that drastically breaks with traditional design methodologies. The arrays of slots straight and parallel to the axis of the feeding rectangular waveguide are without a doubt the most used models because of the reliability that they present at high frequencies, its ability to handle large amounts of power and their simplicity of design and manufacturing. However, there also exist disadvantages as narrow bandwidth in return loss and rapid degradation of the radiation pattern with frequency. These are due to the resonant nature of radiating elements: away from the resonance status, the overall system performance and radiation pattern diminish. For two-dimensional arrays of straight slots, the electric field is polarized transverse to the radiators, corresponding to the plane of high side-lobe level. This thesis aims to develop a systematic method of designing arrays of angled and displaced slots (hereinafter "compound slots"), defined in 1971 as one of the challenges to overcome in the world of antenna design. The used technique is based on the Method of Moments, Circuit Theory and the Theory of Scattering Matrices Connection. Being a circuitry-based method, the first part of this dissertation corresponds to the study of the applicability of the basic equivalent networks, their ability to recreate the slot physical phenomena, their limitations and advantages presented to characterize different compound slot configurations. It delves into the differences of T and ! and determines the selection of the most suitable one depending on the type of radiating element. Once the type of network to be used in the system design is selected, a progressive algorithm called Forward Matching Procedure has been developed to connect the proper equivalent networks from the feeder port to shorted ending. This algorithm is independent of the number of elements, the central operating frequency, the angle of inclination of the slots and selected equivalent network (T or ! networks). It is based on the definition of the array design as a Constraint Satisfaction Problem, solved by means of a Backtracking Algorithm. As a result, the method returns an equivalent circuit of the whole array which is matched at its input port and whose elements consume a power according to a given amplitude distribution for the array. In any group of antennas, the mutual coupling between elements through the radiated field represents one of the biggest problems that the engineer faces and its effects are detrimental to the overall performance of the system, both in radiation capabilities and return loss. The employment of an equivalent circuit for the array design was discarded by some authors because of the difficulty involved in the characterization of the coupling effects and their inclusion in the design stage. In this thesis the coupling has also been modeled as an equivalent network whose elements are ideal transformers and admittances connected to the set of equivalent networks that represent the antennas of the array. By comparing the estimated results in terms of return loss and radiation with those obtained from popular commercial software as CST Microwave Studio, the validity of the proposed method is fully confirmed, representing the first method of systematic design of compound-slot arrays fed by rectangular waveguide. Since these slots do not work under the resonant status, the bandwidth in return loss is much wider than the longitudinal-slot arrays. For the case of two-dimensional arrays, the angle of inclination can be adjusted so that the field is polarized at the low side-lobe level plane. Besides the performed full-wave simulations two prototypes of six and ten elements for the X-band have been designed, built and measured, revealing excellent results and agreement with the expected results. These facts certify that the genuine technique Method of Moments - Matching Forward Procedure developed along this thesis is valid and trustable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Array measurements have become a valuable tool for site response characterization in a non-invasive way. The array design, i.e. size, geometry and number of stations, has a great influence in the quality of the obtained results. From the previous parameters, the number of available stations uses to be the main limitation for the field experiments, because of the economical and logistical constraints that it involves. Sometimes, from the initially planned array layout, carefully designed before the fieldwork campaign, one or more stations do not work properly, modifying the prearranged geometry. Whereas other times, there is not possible to set up the desired array layout, because of the lack of stations. Therefore, for a planned array layout, the number of operative stations and their arrangement in the array become a crucial point in the acquisition stage and subsequently in the dispersion curve estimation. In this paper we carry out an experimental work to analyze which is the minimum number of stations that would provide reliable dispersion curves for three prearranged array configurations (triangular, circular with central station and polygonal geometries). For the optimization study, we analyze together the theoretical array responses and the experimental dispersion curves obtained through the f-k method. In the case of the f-k method, we compare the dispersion curves obtained for the original or prearranged arrays with the ones obtained for the modified arrays, i.e. the dispersion curves obtained when a certain number of stations n is removed, each time, from the original layout of X geophones. The comparison is evaluated by means of a misfit function, which helps us to determine how constrained are the studied geometries by stations removing and which station or combination of stations affect more to the array capability when they are not available. All this information might be crucial to improve future array designs, determining when it is possible to optimize the number of arranged stations without losing the reliability of the obtained results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A L9 orthogonal array design involving 3 factors (C6H12O6, KNO3 and NaH2PO4) and 3 levels for each (C6H12O6: 0.2, 0.4 or 0.8 g/L; KNO3: 0.4, 0.8 or 1.6 g/L, NaH2PO4: 0.05, 0.1 or 0.2 g/L), was used to study the effects of nutrients on dehydrogenase activity and polysaccharide content of substrate biofilms in the integrated vertical-flow constructed wetland (IVCW). Results showed that C6H12O6 and KNO3 were the main factors for dehydrogenase activity and polysaccharide content of biofilms, respectively. The combinations of three nutrients at different concentrations had different effects on dehydrogenase activity and polysaccharide content of biofilms. The optimal combination for dehydrogenase activity was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.8 and 0.05 g, and the optimal combination for polysaccharide content was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.4 and 0.2 g/L, respectively. The corresponding maximum activity and polysaccharide content were 5.40 mu g TF/g substrate/12 h and 3454.6 mu g/g substrate, respectively. These results would provide the laboratory foundation for optimizing the purification function of the wetland systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To explore children's views on microneedle use for this population, particularly as an alternative approach to blood sampling, in monitoring applications, and so, examine the acceptability of this approach to children.

Methods: Focus groups were conducted with children (aged 10-14 years) in a range of schools across Northern Ireland. Convenience sampling was employed, i.e. children involved in a university-directed community-outreach project (Pharmacists in Schools) were recruited.

Key findings: A total of 86 children participated in 13 focus groups across seven schools in Northern Ireland. A widespread disapproval for blood sampling was evident, with pain, blood and traditional needle visualisation particularly unpopular aspects. In general, microneedles had greater visual acceptability and caused less fear. A patch-based design enabled minimal patient awareness of the monitoring procedure, with personalised designs, e.g. cartoon themes, favoured. Children's concerns included possible allergy and potential inaccuracies with this novel approach; however, many had confidence in the judgement of healthcare professionals if deeming this technique appropriate. They considered paediatric patient education critical for acceptance of this new approach and called for an alternative name, without any reference to 'needles'.

Conclusions: The findings presented here support the development of blood-free, minimally invasive techniques and provide an initial indication of microneedle acceptability in children, particularly for monitoring purposes. A proactive response to these unique insights should enable microneedle array design to better meet the needs of this end-user group. Further work in this area is recommended to ascertain the perspectives of a purposive sample of children with chronic conditions who require regular monitoring. © 2013 Royal Pharmaceutical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acid whey has become a major concern especially in dairy industry manufacturing Greek yoghurt. Proper disposal of acid whey is essential as it not only increases the BOD of water but also increases the acidity when disposed of in landfill, rendering soil barren and unsuitable for cultivation. Effluent (acid-whey) treatment increases the cost of production. The vast quantities of acid whey that are produced by the dairy industry make the treatment and safe disposal of effluent very difficult. Hence an economical way to handle this problem is very important. Biogenic glycine betaine and trehalose have many applications in food and confectionery industry, medicine, bioprocess industry, agriculture, genetic engineering, and animal feeds (etc.), hence their production is of industrial importance. Here we used the extreme, obligate halophile Actinopolyspora halophila (MTCC 263) for fermentative production of glycine betaine and trehalose from acid whey. Maximum yields were obtained by implementation of a sequential media optimization process, identification and addition of rate-limiting enzyme cofactors via a bioinformatics approach, and manipulation of nitrogen substrate supply. The implications of using glycine as a precursor were also investigated. The core factors that affected production were identified and then optimized using orthogonal array design followed by response surface methodology. The maximum production achieved after complete optimization was 9.07 ± 0.25 g/L and 2.49 ± 0.14 g/L for glycine betaine and trehalose, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design space of emerging heterogenous multi-core architectures with re-configurability element makes it feasible to design mixed fine-grained and coarse-grained parallel architectures. This paper presents a hierarchical composite array design which extends the curret design space of regular array design by combining a sequence of transformations. This technique is applied to derive a new design of a pipelined parallel regular array with different dataflow between phases of computation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. Results This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. Conclusion AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.