943 resultados para Arrangement of plants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalogue of books consulted and referred to in this edition : v. 1, p. [101]-113.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"A catalogue of books, consulted and referred to in this edition": vol. I, p. [101]-112.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant genomes are extremely complex. Myriad factors contribute to their evolution and organization, as well as to the expression and regulation of individual genes. Here we present investigations into several such factors and their influence on genome structure and gene expression: the arrangement of pairs of physically adjacent genes, retrotransposons closely associated with genes, and the effect of retrotransposons on gene pair evolution. All sequenced plant genomes contain a significant fraction of retrotransposons, including that of rice. We investigated the effects of retrotransposons within rice genes and within a 1 kb putative promoter region upstream of each gene. We found that approximately one-sixth of all rice genes are closely associated with retrotransposons. Insertions within a gene’s promoter region tend to block gene expression, while retrotransposons within genes promote the existence of alternative splicing forms. We also identified several other trends in retrotransposon insertion and its effects on gene expression. Several studies have previously noted a connection among genes between physical proximity and correlated expression profiles. To determine the degree to which this correlation depends on an exact physical arrangement, we studied the expression and interspecies conservation of convergent and divergent gene pairs in rice, Arabidopsis, and Populus trichocarpa. Correlated expression among gene pairs was quite common in all three species, yet conserved arrangement was rare. However, conservation of gene pair arrangement was significantly more common among pairs with strongly correlated expression levels. In order to uncover additional properties of gene pair conservation and rearrangement, we performed a comparative analysis of convergent, divergent, and tandem gene pairs in rice, sorghum, maize, and Brachypodium. We noted considerable differences between gene pair types and species. We also constructed a putative evolutionary history for each pair, which led to several interesting discoveries. To further elucidate the causes of gene pair conservation and rearrangement, we identified retrotransposon insertions in and near rice gene pairs. Retrotransposon-associated pairs are less likely to be conserved, although there are significant differences in the possible effect of different types and locations of retrotransposon insertions. The three types of gene pair also varied in their susceptibility to retrotransposon-associated evolutionary changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical resistivity of soils and sediments is strongly influenced by the presence of interstitial water. Taking advantage of this dependency, electrical-resistivity imaging (ERI) can be effectively utilized to estimate subsurface soil-moisture distributions. The ability to obtain spatially extensive data combined with time-lapse measurements provides further opportunities to understand links between land use and climate processes. In natural settings, spatial and temporal changes in temperature and porewater salinity influence the relationship between soil moisture and electrical resistivity. Apart from environmental factors, technical, theoretical, and methodological ambiguities may also interfere with accurate estimation of soil moisture from ERI data. We have examined several of these complicating factors using data from a two-year study at a forest-grassland ecotone, a boundary between neighboring but different plant communities.At this site, temperature variability accounts for approximately 20-45 of resistivity changes from cold winter to warm summer months. Temporal changes in groundwater conductivity (mean=650 S/cm =57.7) and a roughly 100-S/cm spatial difference between the forest and grassland had only a minor influence on the moisture estimates. Significant seasonal fluctuations in temperature and precipitation had negligible influence on the basic measurement errors in data sets. Extracting accurate temporal changes from ERI can be hindered by nonuniqueness of the inversion process and uncertainties related to time-lapse inversion schemes. The accuracy of soil moisture obtained from ERI depends on all of these factors, in addition to empirical parameters that define the petrophysical soil-moisture/resistivity relationship. Many of the complicating factors and modifying variables to accurately quantify soil moisture changes with ERI can be accounted for using field and theoretical principles.