306 resultados para Argopecten irradians Lamarck
Resumo:
Peptidoglycan recognition proteins (PGRPs) are a type of pattern recognition molecules (PRM) that recognize the unique cell wall component peptidoglycan (PGN) of bacteria and are involved in innate immunity. The first bivalve PGRP cDNA sequence was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and PCR technique. The full-length cDNA of bay scallop PGRP (designated AiPGRP) gene contained 10 18 bp with a 615-bp open reading frame that encoded a polypeptide of 205 amino acids. The predicted amino acid sequence of AiPGRP shared high identity with PGRP in other organisms, such as PGRP precursor in Trichoplusia ni and PGRP SC2 in Drosophila melanogaster. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of AiPGRP in different tissues and the temporal expression of AiPGRP in the mixed primary cultured hemocytes challenged by microbial components lipopolyssacharide (LPS) from Escherichia coli and PGN from Micrococcus luteus. Higher-level mRNA expression of AiPGRP was detected in the tissues of hemocytes, gonad and kidney. The expression of AiPGRP in the mixed primary cultured hemocytes was up regulated after stimulated by PGN, while LPS from E. coli did not induce AiPGRP expression. The results indicated that AiPGRP was a constitutive and inducible expressed protein that was mainly induced by PGN and could be involved in scallop immune response against Gram-positive bacteria infection. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Heat shock protein 70 (HSP70) is an important member of the heat shock protein superfamily, and it plays a key role in the process of protecting cells, facilitating the folding of nascent peptides and responding to stress. The cDNA of bay scallop Argopecten irradians HSP70 (designated AIHSP70) was cloned by the techniques of homological cloning and rapid amplification of cDNA end (RACE). The full length of AIHSP70 cDNA was 2651 bp in length, having a 5' untranslated region (UTR) of 96 bp, a 3' UTR of 575 bp, and an open reading frame (ORF) of 1980 bp encoding a polypeptide of 659 amino acids with an estimated molecular mass of 71.80 kDa and an estimated isoelectric point of 5.26. BLAST analysis revealed that the AIHSP70 gene shared high identity with other known HSP70 genes. Three classical HSP signature motifs were detected in AIHSP70 by InterPro, analysis. 3-D structural prediction of AIHSP70 showed that its N terminal ATPase activity domain and,C terminal substrate-binding domain shared high similarity with that in human heat shock protein 70. The results indicated that the AIHSP70 was a member of the heat shock protein 70 family. A semi-quantitive RT-PCR method was used to analyse the expression of AIHSP70 gene after the treatment of naphthalin which is one kind of polycyclic aromatic hydrocarbon (PAH) and the challenge of bacteria. mRNA expression of AIHSP70 in scallop was up-regulated significantly after the stimulation of naphthalin and increased with increasing naphthalin concentration. A clearly time-dependent expression pattern of AIHSP70 was observed after the scallops were infected by Vibrio anguillarum, and the mRNA expression reached a maximum level at 8 h and lasted to 16 h, and then dropped progressively. The results indicated that AIHSP70 could play an important role in mediating the environmental stress and immune response in scallop. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effects of Heterosigma akashiwo on the early development of Argopecten irradians Lamarck: eggs, D-shaped larvae, eye-spot larvae and juveniles, were investigated under laboratory conditions. Exposing fertilized eggs to various densities of H. akashiwo algal culture revealed that the development of the embryos to the gastrula was significantly slowed at densities of more than 1 X 10(4) cells/ml algal cells, and mostly was arrested when the embryos reached the trochophore larvae stage. At this stage, several trochophore larvae were adhered together by the algal cells, resulting in the inhibition of their swimming activity. Larvae had still not developed into D-shaped larvae after 30 h, and therefore did not finish the hatching process. The attachment and adherence of the algal cells to the larvae might be an important process in the mechanism of the impact on egg hatching success. The activity of the D-shaped larvae was significantly inhibited after 48 h exposure to H. akashiwo at a density of 15 X 10(4) cells/ml and after 96 h at 10 X 10(4) cells/ml. The survival rate of the eye-spot larvae was decreased significantly after 48 h exposure to the algal culture at densities of more than 1 X 10(4) cells/ml. However, all the juveniles could survive and their climbing and attachment activity were not affected after 1 and 5 h exposure to the algal culture at all the various algal cell densities tested from 5 to 20 X 10(4) cells/ml. The results indicated that susceptibility of embryos or larvae to the alga H. akashiwo differs depending on the developmental stage. The embryos and the eye-spot larvae of A. irradians are more sensitive stages to the toxicity of H. akashiwo. Observed effects of H. akashiwo exposure on early development of A. irradians serve to point out to the potential danger of this alga for scallop populations. The possible toxicological mechanisms of H. akashiwo on the scallop embryos and larvae are discussed. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Three F-1 families of the bay scallop, Argopecten irradians, were produced from one, two and 10 individuals. The genetic changes in these populations, which suffered recent and different levels of bottleneck, were analysed using amplified fragment length polymorphism (AFLP) techniques. In the parental stock, a total of 330 bands were detected using seven AFLP primer pairs, and 70% of the loci were polymorphic. All F-1 groups had a significantly lower proportion of polymorphic loci when compared with the initial stock, and loss of the rare loci and reduction in heterozygosity both occurred. The progeny of the larger population (i.e., N=10) exhibited a lesser amount of genetic differentiation compared with the progeny from N=2, which showed lesser differentiation than progeny from N=1. The effective population sizes (N-e) in N=1, 2 and 10 were estimated as 1.50, 1.61 and 2.49. Based on regression analysis, we recommend that at least 340 individuals be used in hatchery populations to maintain genetic variation.
Resumo:
The impacts of Prorocentrum donghaiense Lu and Alexandrium catenella Balech, causative species of the large-scale HAB in the East China Sea, were studied under laboratory conditions. According to bloom densities, the effects of monoculture and mixture of the two species were examined on the egg-hatching success of Argopecten irradians Lamarck, and the population growth of Brachionus plicatilis Muller and Moina mongolica Daday. The results showed that monoculture of A. catenella had a significant inhibition on the egg hatching success of A. irradians, and the population growth of B. plicatilis and M. mongolica. The median effective densities ( EDSo) inhibiting the egg hatching success of A. irradians for 24 h and the population growth of B. plicatilis and M. mongolica for 96 h were 800, 630, and 2 400 cells/cm(3), respectively. Monoculture of P. donghaiense has no such inhibitory effect on the egg hatching success of A. irradians; P. donghaiense at lower suitable densities could sustain the population growth of B. plicatilis (1 x 10(4) similar to 3 x 10(4)cells/cm(3)) and M. mongolica (2 x 10(4) similar to 5 x 10(4) cells/cm(3)); P. doaghaiense at higher densities had significantly adverse effect on the population growth of B. plicatilis (4 x 10(4) similar to 10 x 10(4) cells/cm(3)) and M. mongolica (10 x 10(4) cells/cm(3)). When the two algae were mixed according to bloom densities, P. donghaiense at suitable densities to some extent could decrease the toxicity of A. catenella to B. plicatilis and M. mongolica. The results indicated that the large-scale HAB in the East China Sea could have adverse effect on zooplankton, and might further influence the marine ecosystem, especially when there was also Alexandrium bloom.
Resumo:
The bay scallop (Argopecten irradians irradians Lamarck 1819) has become one of the most important aquaculture species in China. Genetic improvement of cultured bay scallop can benefit greatly from a better understanding of its genome. In this study, we developed amplified fragment length polymorphisms (AFLPs) and simple sequence repeat markers from expressed sequence tags (EST-SSRs) for linkage analysis in bay scallop. Segregation of 390 AFLP and eight SSR markers was analysed in a mapping population of 97 progeny. Of the AFLP markers analysed, 326 segregated in the expected 1:1 Mendelian ratio, while the remaining 74 (or 19.0%) showed significant deviation, with 33 (44.6%) being deficient in heterozygotes (A/a). Among the eight polymorphic EST-SSR loci, one marker (12.5%) was found skewing from its expected Mendelian ratios. Eighteen per cent of the markers segregating from female parent were distorted compared with 21% of the markers segregating from male parent. The female map included 147 markers in 17 linkage groups (LGs) and covered 1892.4 cM of the genome. In the male map, totally 146 AFLP and SSR markers were grouped in 18 LGs spanning 1937.1 cM. The average inter-marker spacing in female and male map was 12.9 and 13.3 cM respectively. The AFLP and SSR markers were distributed evenly throughout the genome except for a few large gaps over 20 cM. Although preliminary, the genetic maps presented here provide a starting point for the mapping of the bay scallop genome.
Resumo:
A base population of the bay scallop, Argopecten irradians irradians Lamarck, was produced by crossing two cultured bay scallop populations. After 1 year of rearing, the top 10% truncation selection of the top 10% (i=1.755) was carried out in the base population of about 1300 adults. A control parental group with a an identical number to the select parental group was randomly selected from the entire population before isolation of the select parental group. The result showed that, at the larval stage, the growth rate of larvae in the selected line was significantly higher than that of the control (P < 0.05), and that the genetic gain was 6.78%. Owing to the lower density of control at the spat stage, the mean shell length of the control line was larger than that of the select line at day 100. When the same density was adjusted between two lines in the grow-out stage (from day 100 to 160), the daily growth rate of the selected line was significantly higher than that of the control line (P < 0.05). Survival of the select line was significantly larger than that of the control line in the grow-out stage. In conclusion, the results obtained from this experiment indicate that selective breeding from a base population with a high genetic diversity established by mass spawning between different populations appears to be a promising method of genetic improvement in bay scallop, A. irradians irradians Lamarck.
Resumo:
In 2002, six cohorts of broodstock bay scallop Argopecten irradians irradians (Ne=1, 2, 10, 30, 50 and control) were randomly chosen from a population of bay scallop to produce offspring. After one year rearing, with the progeny matured, the similar experiment was done to produce the F-2 generation. To determine the magnitude of Ne effects, the growth and survival rates in larvae and adult of six F2 groups were compared. Results showed that inbreeding depression existed not only in the Ne=1 group but also in the Ne=2 group. The growth and survival rates of the two groups were significantly lower than those of the other groups (Ne=10, 30, 50, control), and there were no significant differences among the latter (P>0.05). At the same time, the amount of depression in the Ne=1 group was significantly higher than that of the Ne=2 group (P<0.05). These results indicated that the low effective population size (Ne), which increases the possibility of inbreeding, could lead to some harmful effects on the offspring. So it is essential to maintain a high level of Ne in commercial seed production. Furthermore, as the high fecundity of bay scallop might lead to increased inbreeding, selecting broodstock from different growout sites is recommended.
Resumo:
Two different stocks (A and B) of the bay scallop Argopecten irradialls irradians (Lamarck, 1819) were used to test mass selection on growth. Stock A was a descending stock from the initial introduction from U.S.A. in 1982, which had been cultured in China for about 20 years. Stock B was the third generation from a recent introduction from U.S.A. in 1999. Truncation selection was conducted by selecting the largest 11% scallops in shell length from Stock A and the largest 12.7% scallops from Stock B as parents for the respective selected groups. Before the removal of parents for truncation selection, equal numbers of scallops were randomly chosen from Stock A and B to serve as parents for the control groups. Offspring from the four groups were reared under the same hatchery, nursery, and grow-out conditions. Values of response to selection and realized heritability at larvae, spat and grow-out stages for Stock B were all significantly (P < 0.001) higher than its counterpart for Stock A. For Stock A, no significant response to selection was observed (P > 0.05) at any stage, and the realized heritability for shell length was 0.015 +/- 0.024 for larvae, 0.040 +/- 0.027 for spat, and 0.080 +/- 0.009 for grow-out, respectively. For Stock B, however, significant (P < 0.05) response to selection was observed, and the realized heritability for shell length was 0.511 +/- 0.010 for larvae, 0.341 +/- 0.022 for spat, and 0.338 +/- 0.015 for grow-out. On average, responses to selection at the three stages for Stock B was 30 x, 7.1 x, and 3 x higher than its counterpart for Stock A, respectively. Accordingly, realized heritability at above stages for Stock B was 33 X, 7.5 x, and 3.2 X higher than its counterpart for Stock A, respectively. Differences in response to selection and realized heritability between the two stocks are presumably due to differences in genetic variability. As the 20th generation from the initial introduction consisted of only 26 scallops, Stock A is known to be highly inbred, while inbreeding in Stock B is negligible. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Amplified fragment length polymorphisms (AFLP) were used to study the inheritance of shell color in Argopecten irradians. Two scallops, one with orange and the other with white shells, were used as parents to produce four F-1 families by selfing and outcrossing. Eighty-eight progeny, 37 orange and 51 white, were randomly selected from one of the families for segregation and mapping analysis with AFLP and microsatellite markers. Twenty-five AFLP primer pairs were screened, yielding 1138 fragments, among which 148 (13.0%) were polymorphic in two parents and segregated in progeny. Six AFLP markers showed significant (P < 0.05) association with shell color. All six loci were mapped to one linkage group. One of the markers, F1f335, is completely linked to the gene for orange shell, which we designated as Orange1, without any recombination in the progeny we sampled. The marker was amplified in the orange parent and all orange progeny, but absent in the white parent and all the white progeny. The close linkage between F1f335 and Orange1 was validated using bulk segregation analysis in two natural populations, and all our data indicate that F1f335 is specific for the shell color gene, Orange1. The genomic mapping of a shell color gene in bay scallop improves our understanding of shell color inheritance and may contribute to the breeding of molluscs with desired shell colors.
Resumo:
A complete diallel cross between two bay scallop populations, Argopecten irradians concentricus Say (M) and A. irradians irradians Lamarck (C), was carried out. Growth and survival were compared among hybrids and pure populations. No significant difference in the shell length was found among the four groups on the first day of D-larvae. On day 10, shell lengths of the two reciprocal crosses (CM, MC)(female x male ) were significantly greater than those of the CC (141.97 mu m) and MM (146.20 mu m) groups, with the growth rate of the MC (156.14 mu m) cross greater than that of the CM (155.35 mu m) cross. Also, heterosis for survival was significantly larger than that for growth. Both maternal origin and mating strategy had significant effects on growth and survival throughout the whole larval stage. Heterosis was also observed in later spat and adult stages. On day 170, the mean shell length, shell height and total weight of the CM cross were significantly larger than those of the other crosses (P<0.05). The results from this study indicate that hybridization between A. irradians concentricus and A. irradians irradians may be a promising way for genetic improvement of existing bay scallop brood stocks in China. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper examines the effect of inbreeding level of population on the magnitude of inbreeding depression expressed by comparing them between two cultured populations (A and B) in the hermaphroditic animal of the bay scallop Argopecten irradians irradians. Population A is expected to have less genetic variations and higher inbreeding level due to longer cultured history (20 generations) and less "ancestral" individuals (26 individuals) than population B due to shorter cultured history (4 generations) and more "ancestral" individuals (406 individuals). Two groups within each population were produced, one using self-fertilization and one using mass-mating within the same population. Selfed offspring (AS and BS) from two populations both had lower fitness components than their mass-mated counterparts (AM and BM) and exhibited inbreeding depression for all examined traits, e.g. lower hatching, less viability and slower growth, indicating that inbreeding depression is a common feature in this animal. Fitness components in all traits of offspring from population A significantly differed those from population B and the magnitude of inbreeding depression for all traits in population A with higher inbreeding level was significantly smaller than that in population B with lower inbreeding level, indicating that both fitness components and magnitude of inbreeding depression were significantly affected by inbreeding level of populations and genetic load harbored in population A may be partially purged through inbreeding. Moreover, the magnitude of inbreeding depression in the two populations both varied among traits and life history stages. The present results support the partial-dominance hypothesis of inbreeding depression. (C) 2008 Elsevier B.V. All rights reserved.