1000 resultados para Archean Crustal Evolution
Resumo:
Terrestrial planets produce crusts as they differentiate. The Earth’s bi-modal crust, with a high-standing granitic continental crust and a low-standing basaltic oceanic crust, is unique in our solar system and links the evolution of the interior and exterior of this planet. Here I present geochemical observations to constrain processes accompanying crustal formation and evolution. My approach includes geochemical analyses, quantitative modeling, and experimental studies. The Archean crustal evolution project represents my perspective on when Earth’s continental crust began forming. In this project, I utilized critical element ratios in sedimentary records to track the evolution of the MgO content in the upper continental crust as a function time. The early Archean subaerial crust had >11 wt. % MgO, whereas by the end of Archean its composition had evolved to about 4 wt. % MgO, suggesting a transition of the upper crust from a basalt-like to a more granite-like bulk composition. Driving this fundamental change of the upper crustal composition is the widespread operation of subduction processes, suggesting the onset of global plate tectonics at ~ 3 Ga (Abstract figure). Three of the chapters in this dissertation leverage the use of Eu anomalies to track the recycling of crustal materials back into the mantle, where Eu anomaly is a sensitive measure of the element’s behavior relative to neighboring lanthanoids (Sm and Gd) during crustal differentiation. My compilation of Sm-Eu-Gd data for the continental crust shows that the average crust has a net negative Eu anomaly. This result requires recycling of Eu-enriched lower continental crust to the mantle. Mass balance calculations require that about three times the mass of the modern continental crust was returned into the mantle over Earth history, possibly via density-driven recycling. High precision measurements of Eu/Eu* in selected primitive glasses of mid-ocean ridge basalt (MORB) from global MORs, combined with numerical modeling, suggests that the recycled lower crustal materials are not found within the MORB source and may have at least partially sank into the lower mantle where they can be sampled by hot spot volcanoes. The Lesser Antilles Li isotope project provides insights into the Li systematics of this young island arc, a representative section of proto-continental crust. Martinique Island lavas, to my knowledge, represent the only clear case in which crustal Li is recycled back into their mantle source, as documented by the isotopically light Li isotopes in Lesser Antilles sediments that feed into the fore arc subduction trench. By corollary, the mantle-like Li signal in global arc lavas is likely the result of broadly similar Li isotopic compositions between the upper mantle and bulk subducting sediments in most arcs. My PhD project on Li diffusion mechanism in zircon is being carried out in extensive collaboration with multiple institutes and employs analytical, experimental and modeling studies. This ongoing project, finds that REE and Y play an important role in controlling Li diffusion in natural zircons, with Li partially coupling to REE and Y to maintain charge balance. Access to state-of-art instrumentation presented critical opportunities to identify the mechanisms that cause elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. My work here elucidates the elemental fractionation associated with plasma plume condensation during laser ablation and particle-ion conversion in the ICP.
Resumo:
Comparison of initial Pb-isotope signatures of several early Archaean (3.65-3.82 Ga) lithologies (orthogneisses and metasediments) and minerals (feldspar and galena) documents the existence of substantial isotopic heterogeneity in the early Archaean, particularly in the Pb-207/Pb-204 ratio. The magnitude of isotopic variability at 3.82-3.65 Ga requires source separation between 4.3 and 4.1 Ga, depending on the extent of U/Pb fractionation possible in the early Earth. The isotopic heterogeneity could reflect the coexistence of enriched and depleted mantle domains or the separation of a terrestrial protocrust with a U-238/Pb-204 (mu) that was ca. 20-30% higher than coeval mantle. We prefer this latter explanation because the high-p signature is most evident in metasediments (that formed at the Earth's surface). This interpretation is strengthened by the fact that no straightforward mantle model can be constructed for these high-mu lithologies without violating bulk silicate Earth constraints. The Pb-isotope evidence for a long-lived protocrust complements similar Hf-isotope data from the Earth's oldest zircons, which also require an origin from an enriched (low Lu/Hf) environment. A model is developed in which greater than or equal to3.8-Ga tonalite and monzodiorite gneiss precursors (for one of which we provide zircon U-Pb data) are not mantle-derived but formed by remelting or differentiation of ancient (ca. 4.3 Ga) basaltic crust which had evolved with a higher U/Pb ratio than coeval mantle in the absence of the subduction process. With the initiation of terrestrial subduction at, we propose, ca. 3.75 Ga, most of the greater than or equal to3.8-Ga basaltic shell (and its differentiation products) was recycled into the mantle, because of the lack of a stabilising mantle lithosphere. We argue that the key event for preservation of all greater than or equal to3.8-Ga terrestrial crust was the intrusion of voluminous granitoids immediately after establishment of global subduction because of complementary creation of a lithospheric keel. Furthermore, we argue that preservation of !3.8-Ga material (in situ rocks and zircons) globally is restricted to cratons with a high U/Pb source character (North Atlantic, Slave, Zimbabwe, Yilgarn, and Wyoming), and that the Pb-isotope systematics of these provinces are ultimately explained by reworking of material that was derived from ca. 4.3 Ga (i.e. Hadean) basaltic crust.
Resumo:
New and published major and trace element abundances of elastic metasediments (mainly garnet-biotite-plagioclase schists) from the similar to 3.8 Ga Isua Greenstone Belt (IGB), southern West Greenland, are used in an attempt to identify the compositional characteristics of the protoliths of these sediments. Compositionally, the metasediments are heterogeneous with enrichment of LREE (La/Sm-chord = 1.1-3.9) and variable enrichment and depletion of HREE (Gd/Yb-chord = 0.8-4.3). Chondrite-normalized Eu is also variable, spanning a range from relative Eu depletion to enrichment (Eu/Eu* = 0.6-1.3). A series of geochemical and geological criteria provides conclusive evidence for a sedimentary origin, in disagreement with some previous studies that questioned the presence of genuine elastic metasediments. In particular, trace element systematics of IGB metasediments show strong resemblance to other well-documented Archaean clastic sediments, and are consistent with a provenance consisting of ultramafic, malic and felsic igneous rocks. Two schists, identified as metasomatized mafic igneous rocks from petrographic and field evidence, show distinct compositional differences to the metasediments. Major element systematics document incipient-to-moderate source weathering in the majority of metasediments, while signs of secondary K-addition are rare. Detailed inspection of Eu/Eu*, Fe2O3 and CIW (chemical index of weathering) relationships reveals that elevated iron contents (when compared to averages for continental crust) and strong relative enrichment in Eu may be due to precipitation of marine Fe-oxyhydroxides during deposition or diagenesis on the seafloor. Some of the IGB metasediments have yielded anomalous Nd-142 and W-182 isotopic compositions that were respectively interpreted in terms of early mantle differentiation processes and the presence of a meteorite component. Alternatively, W and possibly Nd isotopes could have been affected by thermal neutron capture on the Hadean surface. The latter process was tested in this study by analysis of Sm isotope compositions, which serve as an effective monitor for neutron capture effects. As no anomalous variation from terrestrial values was detected, we infer that isotope systematics (including W-182 and Nd-142) of IGB metasediments were not affected by neutron capture, but reflect decay of radioactive parent isotopes. Copyright (c) 2005 Elsevier Ltd.
Resumo:
Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, ther¬mal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are con¬trolled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evi¬dence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. This work shows however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt (SJDD) bimodal intrusion, France. This intrusion emplaced ca. 347 Ma ago (IDTIMS U/Pb on zircon) in the Precambrian crust of the Armori- can massif and preserves remarkable sill-like emplacement processes of bimodal mafic-felsic magmas. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built ioppolith. Early m-thick mafic sills (eastern part) form the roof of the intrusion and are homogeneous and fine-grained with planar contacts with neighboring felsic sills; within a minimal 0.8 Ma time span, the system gets warmer (western part). Sills are emplaced by under-accretion under the old east¬ern part, interact and mingle. A striking feature of this younger, warmer part is in-situ differentiation of the mafic sills in the top 40 cm of the layer, which suggests liquids survival in the shallow crust. Rheological and thermal models were performed in order to determine the parameters required to allow this observed in- situ differentiation-accumulation processes. Strong constraints such as total emplacement durations (ca. 0.8 Ma, TIMS date) and pluton thickness (1.5 Km, gravity model) allow a quantitative estimation of the various parameters required (injection rates, incubation time,...). The results show that in-situ differentiation may be achieved in less than 10 years at such shallow depth, provided that: (1) The differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens (eastern part formation in the SJDD intrusion). The latter are emplaced in a very short time (800 years) at high injection rate (0.5 m/y) in order to create a "hot zone" in the shallow crust (incubation time). This implies that nearly 1/3 of the pluton (400m) is emplaced by a subsequent and sustained magmatic activity occurring on a short time scale at the very beginning of the system. (2) Once incubation time is achieved, the calculations show that a small hot zone is created at the base of the sill pile, where new injections stay above their solidus T°C and may interact and differentiate. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones within the "warm" part of the pluton. (3) Finally, the model show that in order to maintain a permanent hot zone at shallow level, injection rate must be of 0.03 m/y with injection of 5m thick basaltic sills eveiy 130yr, imply¬ing formation of a 15 km thick pluton. As this thickness is in contradiction with the one calculated for SJDD (1.5 Km) and exceed much the average thickness observed for many shallow level plutons, I infer that there is no permanent hot zone (or magma chambers) at such shallow level. I rather propose formation of small, ephemeral (10-15yr) reservoirs, which represent only small portions of the final size of the pluton. Thermal calculations show that, in the case of SJDD, 5m thick basaltic sills emplaced every 1500 y, allow formation of such ephemeral reservoirs. The latter are formed by several sills, which are in a mushy state and may interact and differentiate during a short time.The mineralogical, chemical and isotopic data presented in this study suggest a signature intermediate be¬tween E-MORB- and arc-like for the SJDD mafic sills and feeder dykes. The mantle source involved produced hydrated magmas and may be astenosphere modified by "arc-type" components, probably related to a sub¬ducting slab. Combined fluid mobile/immobile trace elements and Sr-Nd isotopes suggest that such subduc¬tion components are mainly fluids derived from altered oceanic crust with minor effect from the subducted sediments. Close match between the SJDD compositions and BABB may point to a continental back-arc setting with little crustal contamination. If so, the SjDD intrusion is a major witness of an extensional tectonic regime during the Early-Carboniferous, linked to the subduction of the Rheno-Hercynian Ocean beneath the Variscan terranes. Also of interest is the unusual association of cogenetic (same isotopic compositions) K-feldspar A- type granite and albite-granite. A-type granites may form by magma mixing between the mafic magma and crustal melts. Alternatively, they might derive from the melting of a biotite-bearing quartz-feldspathic crustal protolith triggered by early mafic injections at low crustal levels. Albite-granite may form by plagioclase cu¬mulate remelting issued from A-type magma differentiation.
Resumo:
The primary aim of the present study is to acquire a large amount of gravity data, to prepare gravity maps and interpret the data in terms of crustal structure below the Bavali shear zone and adjacent regions of northern Kerala. The gravity modeling is basically a tool to obtain knowledge of the subsurface extension of the exposed geological units and their structural relationship with the surroundings. The study is expected to throw light on the nature of the shear zone, crustal configuration below the high-grade granulite terrain and the tectonics operating during geological times in the region. The Bavali shear is manifested in the gravity profiles by a steep gravity gradient. The gravity models indicate that the Bavali shear coincides with steep plane that separates two contrasting crustal densities extending beyond a depth of 30 km possibly down to Moho, justifying it to be a Mantle fault. It is difficult to construct a generalized model of crustal evolution in terms of its varied manifestations using only the gravity data. However, the data constrains several aspects of crustal evolution and provides insights into some of the major events.
Resumo:
Elemental and Sr-Nd isotopic data on metatexites, diatexites, orthogneisses and charnockites from the central Ribeira Fold Belt indicate that they are LILE-enriched weakly peraluminous granodiorites. Harker and Th-Hf-La correlation trends suggest that these rocks represent a co-genetic sequence, whereas variations on CaO, MnO, Y and HREE for charnockites can be explained by garnet consumption during granulitic metamorphism. Similar REE patterns and isotopic results of epsilon(565)(Nd) = -5.4 to -7.3 and (87)Sr/(86)Sr(565) = 0.706-0.711 for metatexites, diatexites, orthogneisses and charnockites, as well as similar T(DM) ages between 2.0 and 1.5 Ga are consistent with evolution from a relatively homogeneous and enriched common crustal (metasedimentary) protolith. Results suggest a genetic link between metatexites, diatexites, orthogneisses and charnockites and a two-step process for charnockite development: (a) generation of the hydrated igneous protoliths by anatexis of metasedimentary rocks; (b) continuous high-grade metamorphism that transformed the ""S-type granitoids"" (leucosomes and diatexites) into orthogneisses and, as metamorphism and dehydration progressed, into charnockites. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern Sao Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 +/- 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.
Resumo:
The c. 600 Ma Brasiliano Borborema Province of NE Brazil comprises a complex collage of Precambrian crustal blocks cut by a series of continental-scale shear zones. The predominant basement rocks in the province are 2.1-2.0 Ga Transamazonian gneisses of both juvenile and reworked nature. U-Pb zircon and Sm-Nd whole-rock studies of tonalite-trondhjemite-granodiorite basement gneisses in the NW Ceará or Médio Coreaú domain in the northwestern part of the Borborema Province indicate that this represents a continental fragment formed by 2.35-2.30 Ga juvenile crust. This block has no apparent genetic affinity with any other basement gneisses in the Borborema Province, and it does not represent the tectonized margin of the c. 2.1-2.0 Ga São Luis Craton to the NW. The petrological and geochemical characteristics, as well as the Nd-isotopic signatures of these gneisses, are consistent with their genesis in an island arc setting. This finding documents a period of crustal growth during a period of the Earth's history which is known for its tectonic quiescence and paucity of crust formation. © Geological Society of London 2009.
Resumo:
The Archean (3.45-2.70Ga) rocks of the São José do Campestre Massif (SJCM) in the Borborema Province (NE Brazil) make up a small area (~6000km2) and are composed of granitoids and metasupracrustal rocks that define a complex magmatic and deformational history. The massif provides the opportunity to study mantle- and crustal-derived magmas generated since the Palaeoarchean. The orthogneisses of the SJCM are composed of: (1) tonalite to granodiorite with diorite enclaves (Bom Jesus gneiss, 3412±8Ma; TDM Nd model ages from 4.1 to 3.5Ga and negative epsilon Nd values); (2) biotite and ferroan-diopside monzogranite (Presidente Juscelino complex, 3356±21Ma and 3251±44Ma; TDM model ages range from 4.1 to 3.4Ga and epsilon Nd values that are slightly positive to negative); (3) hornblende tonalite to granodiorite (Brejinho complex, 3333±77Ma and 3187±8Ma; dominantly positive epsilon Nd values and TDM ages from 3.6 to 3.2Ga); (4) biotite monzogranite (São Pedro do Potengi gneiss, 3120±22Ma; TDM =3.5Ga; negative epsilon Nd value); (5) ferroan-diopside-grossular anorthosite and metagabbro (Senador Elói de Souza complex, 3033±3Ma); and (6) quartz diorite to syenogranite (São José do Campestre complex; 2685±9Ma and 2655±4Ma; negative epsilon Nd values and TDM ages from 3.9 to 3.3Ga). The orthogneisses are subalkaline to faintly alkaline, magnesian to ferroan, M- and I-type granitoids that follow either the K-enrichment or the trondhjemite trends. Each group has a subset with REE characteristics similar to Archean TTG and another that is analogous to Phanerozoic granitoids. They have negative Ta-Nb and Ti anomalies and have trace element contents of granitoids from subduction zones. Geochemical and Nd isotope data suggest that subducted oceanic crust and a depleted and metasomatised mantle wedge both acted as the magma sources. We propose a convergent tectonic model in which hybridisation of the upper mantle occurs through interactions with adakitic or trondhjemitic melts and recycling of earlier crust. The results imply that both the subducted oceanic crust and the mantle wedge played major roles in continent formation throughout successive episodes of arc accretion in Palaeo- and Mesoarchean times. The Archean rocks of the SJCM shares some similarities with the Pilbara, Kaapvaal, West African, and São Francisco cratons. However, the most reliable comparisons with the SJCM are with the neighbouring basement of the Nigeria and Cameroon shields. © 2012 Elsevier B.V.
Resumo:
High-grade metasedimentary rocks can preserve geochemical signatures of their sedimentary protolith if significant melt extraction did not occur. Retrograde reaction textures provide the main evidence for trapped melt in the rock fabrics. Carvalhos Klippe rocks in Southern Brasilia Orogen, Brazil, present a typical high-pressure granulite assemblage with evidence of mica breakdown partial melting (Ky + Grt + Kfs +/- Bt +/- Rt). The metamorphic peak temperatures obtained by Zr-in-Rt and ternary feldspar geothermometers are between 850 degrees C and 900 degrees C. The GASP bane peak pressure obtained using grossular rich garnet core is 16 kbar. Retrograde reaction textures in which the garnet crystals are partially to totally replaced by Bt + Qtz +/- Fsp intergrowths are very common in the Carvalhos Klippe rocks. These reactions are interpreted as a result of interactions between residual phases and trapped melt during the retrograde path. In the present study the geochemical signatures of three groups of Carvalhos Klippe metasedimentary rocks are analysed. Despite the high metamorphic grade these three groups show well-defined geochemical features and their REE patterns are similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). The high-pressure granulite facies Grt-Bt-Pl gneisses with immature arenite (wacke, arkose or lithic-arenite) geochemical signatures present in the Carvalhos Klippe are compared to similar rocks in amphibolite facies from the same tectonic framework (Andrelandia Nappe System). The similar geochemical signatures between Grt-Bt-Pl gneisses metamorphosed in high-pressure granulite facies and Grt-Bt-Pl-Qtz schists from the Andrelandia and Liberdade Nappes, with minimal to absent melting conditions, are suggestive of low rates of melt extraction in these high-grade rocks. The rocks with pelitic compositions most likely had higher melt extraction and even under such circumstances nevertheless tend to show REE patterns similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Os isótopos estáveis de O, H e S foram utilizados para investigar a origem das rochas magmáticas nos Terrenos Jauru e Pontes e Lacerda do SW do Craton Amazônico, estado de Mato Grosso, Brasil. No Terreno Jauru as rochas granitóides do Greenstone belt Alto Jauru e da Suíte Cachoeirinha apresentam valores de δ18O entre +9,0‰ e +6,3‰ que indicam derivação a partir de magmas juvenis. Na Suíte Intrusiva Rio Branco valores de δ18O para rochas básicas estão entre +5,4‰ e +5,8‰ e para rochas félsicas entre +8,7‰ e +9,0‰; rochas intermediárias apresentam valores entre +7,3‰ e +8,3‰. Os valores mais baixos de δ18O, obtidos nas rochas básicas, são compatíveis com derivação mantélica, porém as rochas félsicas apresentam valores de δ18O compatíveis com origem crustais. Análises de isótopos estáveis de H (rocha total) forneceram valores de δD entre - 83‰ e -92‰, diferente das assinaturas de rochas metamórficas e de águas meteóricas. Resultados em sulfetos para isótopos estáveis de S em rochas básicas e intermediárias desta suíte apresentam valores de δ34S coerentes com uma fonte mantélica (entre + 0,7‰ e +3,8‰), enquanto os valores de δ34S (entre +5,2‰ e +6,1‰) obtidos nas rochas félsicas sugerem participação crustal na sua gênese. Na Suíte Santa Helena (Terreno Pontes e Lacerda) os resultados obtidos para δ18O se agrupam entre +4,4‰ e +8,9‰ indicando uma origem mantélica. O presente estudo confirma a importância da aplicação de isótopos estáveis para a compreensão de processos magmáticos e evolução crustal.
Resumo:
The Itajai Basin located in the southern border of the Luis Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajai Group is represented by sandstones and conglomerates (BaA(0) Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeiro Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeiro Neisse (arkosic sandstones and siltites), and Ribeiro do Bode (distal silty turbidites) formations. The ApiA(0)na Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajai Basin. The Brusque Group and the Florianpolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, So Miguel and CamboriA(0) complexes. The lack of any oceanic crust in the Itajai Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajai Basin is temporally and tectonically correlated with the Camaqu Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriapolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.