3 resultados para Archaeopteryx
Resumo:
Archaeopteryx has played a central role in the debates on the origins of avian (and dinosaurian) flight, even though as a flier it probably represents a relatively late stage in the beginnings of fl ight. We report on aerodynamic tests using a life-sized model of Archaeopteryx performing in a low turbulence wind tunnel. Our results indicate that tail deflection significantly decreased take-off velocity and power consumption, and that the first manual digit could have functioned as the structural precursor of the alula. Such results demonstrate that Archaeopteryx had already evolved high-lift devices, which are functional analogues of those present in today's birds.
Resumo:
Archaeopteryx may be envisaged as an occasional or opportunistic flier that maintained an essentially dinosaurian life style on the shore but took to the air when circumstances were favourable. Such an interpretation is fully consistent with what is known of the anatomy, the taphonomy and the habitat of Archaeopteryx.
Resumo:
THE STORY OF HOW FEATHERS EVOLVED IS FAR FROM OVER. IN 1868, THOMAS HUXLEY declared that dinosaurs gave rise to birds. He based his claim on Compsognathus, a 150-million-year-old dinosaur fossil from Solnhofen, Germany, whose delicate hind legs were remarkably similar to those of table fowl. The discovery seven years earlier of Archaeopteryx, a fossil bird with a long bony tail, toothed jaws and clawed fingers, had convinced many people that birds were somehow related to reptiles. But Compsognathus was the fossil that placed dinosaurs firmly in the middle of this complex evolutionary equation. Wings, claimed Huxley, must have grown out of rudimentary forelimbs. And feathers? Whether Compsognathus had them, Huxley could only guess. Nevertheless, his theory clearly required that scales had somehow transformed into feathers. The question was not just how, but why?