969 resultados para Archaean seafloor
Resumo:
Two main deformational phases are recognised in the Archaean Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia, primarily involving southover- north thrust faulting that repeated and thickened the stratigraphy, followed by east northeast – west-southwest shortening that resulted in macroscale folding of the greenstone lithologies. The domain preserves mid-greenschist facies metamorphic grade, with an increase to lower amphibolite metamorphic grade towards the north of the region. As a result of the deformation and metamorphism, individual stratigraphic horizons are difficult to trace continuously throughout the entire domain. Volcanological and sedimentological textures and structures, primary lithological contacts, petrography and geochemistry have been used to correlate lithofacies between faultbounded structural blocks. The correlated stratigraphic sequence for the Boorara Domain comprises quartzo-feldspathic turbidite packages, overlain by high-Mg tholeiitic basalt (lower basalt), coherent and clastic dacite facies, intrusive and extrusive komatiite units, an overlying komatiitic basalt unit (upper basalt), and at the stratigraphic top of the sequence, volcaniclastic quartz-rich turbidites. Reconstruction of the stratigraphy and consideration of emplacement dynamics has allowed reconstruction of the emplacement history and setting of the preserved sequence. This involves a felsic, mafic and ultramafic magmatic system emplaced as high-level intrusions, with localised emergent volcanic centres, into a submarine basin in which active sedimentation was occurring.
Resumo:
This thesis summarises the results of four original papers concerning U-Pb geochronology and geochemical evolution of Archaean rocks from the Kuhmo terrain and the Nurmes belt, eastern Finland. The study area belongs to a typical Archaean granite-greenstone terrain, composed of metavolcanic and metasedimentary rocks in generally N-S trending greenstone belts as well as a granitoid-gneiss complex with intervening gneissic and migmatised supracrustal and plutonic rocks. U-Pb data on migmatite mesosomes indicate that the crust surrounding the Tipasjärvi-Kuhmo-Suomussalmi greenstone belt is of varying age. The oldest protolith detected for a migmatite mesosome from the granitoid-gneiss complex is 2.94 Ga, whereas the other dated migmatites protoliths have ages of 2.84 2.79 Ga. The latter protoliths are syngenetic with the majority of volcanic rocks in the adjacent Tipasjärvi-Kuhmo-Suomussalmi greenstone belt. This suggests that the genesis of some of the volcanic rocks within the greenstone belt and surrounding migmatite protoliths could be linked. Metamorphic zircon overgrowths with ages of 2.84 2.81 Ga were also obtained. The non-migmatised plutonic rocks in the Kuhmo terrain and in the Nurmes belt record secular geochemical evolution, typical of Archaean cratons. The studied tonalitic rocks have ages of 2.83 2.75 Ga and they have geochemical characteristics similar to low-Al and high-Al TTD (tonalite-trondhjemite-dacite). The granodiorites, diorites, and gabbros with high Mg/Fe and LILE-enriched characteristics were mostly emplaced between 2.74 2.70 Ga and they exhibit geochemical characteristics typical of Archaean sanukitoid suites. The latest identified plutonic episode took place at 2.70 2.68 Ga, when compositionally heterogeneous leucocratic granitoid rocks, with a variable crustal component, were emplaced. U-Pb data on migmatite leucosomes suggest that leucosome generation may have been coeval with this latest plutonic event. On the basis of available U-Pb and Sm-Nd isotopic data it appears that the plutonic rocks of the Kuhmo terrain and the Nurmes belt do not contain any significant input from Palaeoarchaean sources. A characteristic feature of the Nurmes belt is the presence of migmatised paragneisses, locally preserving primary edimentary structures, with sporadic amphibolite intercalations. U-Pb studies on zircons indicate that the precursors of the Nurmes paragneisses were graywackes that were deposited between 2.71 Ga and 2.69 Ga and that they had a prominent 2.75 2.70 Ga source. Nd isotopic and whole-rock geochemical data for the intercalated amphibolites imply MORB sources. U-Pb data on zircons from the plutonic rocks and paragneisses reveal that metamorphic zircon growth took place at 2.72 2.63 Ga. This was the last tectonothermal event related to cratonisation of the Archaean crust of eastern Finland.
Resumo:
Executive Summary: A number of studies have shown that mobile, bottom-contact fishing gear (such as otter trawls) can alter seafloor habitats and associated biota. Considerably less is known about the recovery of these resources following such disturbances, though this information is critical for successful management. In part, this paucity of information can be attributed to the lack of access to adequate control sites – areas of the seafloor that are closed to fishing activity. Recent closures along the coast of central California provide an excellent opportunity to track the recovery of historically trawled areas and to compare recovery rates to adjacent areas that continue to be trawled. In June 2006 we initiated a multi-year study of the recovery of seafloor microhabitats and associated benthic fauna inside and outside two new Essential Fish Habitat (EFH) closures within the Cordell Bank and Gulf of the Farallones National Marine Sanctuaries. Study sites inside the EFH closure at Cordell Bank were located in historically active areas of fishing effort, which had not been trawled since 2003. Sites outside the EFH closure in the Gulf of Farallones were located in an area that continues to be actively trawled. All sites were located in unconsolidated sands at equivalent water depths. Video and still photographic data collected via a remotely operated vehicle (ROV) were used to quantify the abundance, richness, and diversity of microhabitats and epifaunal macro-invertebrates at recovering and actively trawled sites, while bottom grabs and conductivity/temperature/depth (CTD) casts were used to quantify infaunal diversity and to characterize local environmental conditions. Analysis of still photos found differences in common seafloor microhabitats between the recovering and actively trawled areas, while analysis of videographic data indicated that biogenic mound and biogenic depression microhabitats were significantly less abundant at trawled sites. Each of these features provides structure with which demersal fishes, across a wide range of size classes, have been observed to associate. Epifaunal macro-invertebrates were sparsely distributed and occurred in low numbers in both treatments. However, their total abundance was significantly different between treatments, which was attributable to lower densities at trawled sites. In addition, the dominant taxa were different between the two sites. Patchily-distributed buried brittle stars dominated the recovering site, and sea whips (Halipteris cf. willemoesi) were most numerous at the trawled site though they occurred in only five of ten transects. Numerical classification (cluster analysis) of the infaunal samples also revealed a clear difference between benthic assemblages in the recovering vs. trawled areas due to differences in the relative abundances of component species. There were no major differences in infaunal species richness, H′ diversity, or J′ evenness between recovering vs. trawled site groups. However, total infaunal abundance showed a significant difference attributable to much lower densities at trawled sites. This pattern was driven largely by the small oweniid polychaete Myriochele gracilis, which was the most abundant species in the overall study region though significantly less abundant at trawled sites. Other taxa that were significantly less abundant at trawled sites included the polychaete M. olgae and the polychaete family Terebellidae. In contrast, the thyasirid bivalve Axinopsida serricata and the polychaetes Spiophanes spp. (mostly S. duplex), Prionospio spp., and Scoloplos armiger all had significantly to near significantly higher abundances at trawled sites. As a result of such contrasting species patterns, there also was a significant difference in the overall dominance structure of infaunal assemblages between the two treatments. It is suggested that the observed biological patterns were the result of trawling impacts and varying levels of recovery due to the difference in trawling status between the two areas. The EFH closure was established in June 2006, within a month of when sampling was conducted for the present study, however, the stations within this closure area are at sites that actually have experienced little trawling since 2003, based on National Marine Fishery Service trawl records. Thus, the three-year period would be sufficient time for some post-trawling changes to have occurred. Other results from this study (e.g., similarly moderate numbers of infaunal species in both areas that are lower than values recorded elsewhere in comparable habitats along the California continental shelf) also indicate that recovery within the closure area is not yet complete. Additional sampling is needed to evaluate subsequent recovery trends and persistence of effects. Furthermore, to date, the study has been limited to unconsolidated substrates. Ultimately, the goal of this project is to characterize the recovery trajectories of a wide spectrum of seafloor habitats and communities and to link that recovery to the dynamics of exploited marine fishes. (PDF has 48 pages.)
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)
Resumo:
Groupers are important components of commercial and recreational fisheries. Current methods of diver-based grouper census surveys could potentially benefit from development of remotely sensed methods of seabed classification. The goal of the present study was to determine if areas of high grouper abundance have characteristic acoustic signatures. A commercial acoustic seabed mapping system, QTC View Series V, was used to survey an area near Carysfort Reef, Florida Keys. Acoustic data were clustered using QTC IMPACT software, resulting in three main acoustic classes covering 94% of the area surveyed. Diver-based data indicate that one of the acoustic classes corresponded to hard substrate and the other two represented sediment. A new measurement of seabed heterogeneity, designated acoustic variability, was also computed from the acoustic survey data in order to more fully characterize the acoustic response (i.e., the signature) of the seafloor. When compared with diver-based grouper census data, both acoustic classification and acoustic variability were significantly different at sites with and without groupers. Sites with groupers were characterized by hard bottom substrate and high acoustic variability. Thus, the acoustic signature of a site, as measured by acoustic classification or acoustic variability, is a potentially useful tool for stratifying diver sampling effort for grouper census.
Resumo:
Otter trawls are very effective at capturing flatfish, but they can affect the seaf loor ecosystems where they are used. Alaska f latf ish trawlers have very long cables (called sweeps) between doors and net to herd fish into the path of the trawl. These sweeps, which ride on and can disturb the seaf loor, account for most of the area affected by these trawls and hence a large proportion of the potential for damage to seaf loor organisms. We examined modifications to otter trawls, such that disk clusters were installed at 9-m intervals to raise trawl sweeps small distances above the seafloor, greatly reducing the area of direct seafloor contact. A critical consideration was whether flatfish would still be herded effectively by these sweeps. We compared conventional and modified sweeps using a twin trawl system and analyzed the volume and composition of the resulting catches. We tested sweeps raised 5, 7.5, and 10 cm and observed no significant losses of flatfish catch until sweeps were raised 10 cm, and those losses were relatively small (5–10%). No size composition changes were detected in the flatfish catches. Alaska pollock (Theragra chalcogramma) were captured at higher rates with two versions of the modified sweeps. Sonar observations of the sweeps in operation and the seaf loor after passage confirmed that the area of direct seafloor contact was greatly reduced by the modified sweep
Resumo:
Defining types of seafloor substrate and relating them to the distribution of fish and invertebrates is an important but difficult goal. An examination of the processing steps of a commercial acoustics analyzing software program, as well as the data values produced by the proprietary first echo measurements, revealed potential benef its and drawbacks for distinguishing acoustically distinct seafloor substrates. The positive aspects were convenient processing steps such as gain adjustment, accurate bottom picking, ease of bad data exclusion, and the ability to average across successive pings in order to increase the signal-to-noise ratio. A noteworthy drawback with the processing was the potential for accidental inclusion of a second echo as if it were part of the first echo. Detailed examination of the echogram measurements quantified the amount of collinearity, revealed the lack of standardization (subtraction of mean, division by standard deviation) before principal components analysis (PCA), and showed correlations of individual echogram measurements with depth and seafloor slope. Despite the facility of the software, these previously unknown processing pitfalls and echogram measurement characteristics may have created data artifacts that generated user-derived substrate classifications, rather than actual seafloor substrate types.
Resumo:
Unobserved mortalities of nontarget species are among the most troubling and difficult issues associated with fishing, especially when those species are targeted by other fisheries. Of such concern are mortalities of crab species of the Bering Sea, which are exposed to bottom trawling from groundfish fisheries. Uncertainty in the management of these fisheries has been exacerbated by unknown mortality rates for crabs struck by trawls. In this study, the mortality rates for 3 species of commercially important crabs—red king crab, (Paralithodes camtschaticus), snow crab (Chionoecetes opilio) and southern Tanner crab (C. bairdi)—that encounter different components of bottom trawls were estimated through capture of crabs behind the bottom trawl and by evaluation of immediate and delayed mortalities. We used a reflex action mortality predictor to predict delayed mortalities. Estimated mortality rates varied by species and by the part of the trawl gear encountered. Red king crab were more vulnerable than snow or southern Tanner crabs. Crabs were more likely to die after encountering the footrope than the sweeps of the trawl, and higher death rates were noted for the side sections of the footrope than for the center footrope section. Mortality rates were ≤16%, except for red king crab that passed under the trawl wings (32%). Herding devices (sweeps) can expand greatly the area of seafloor from which flatfishes are captured, and they subject crabs in that additional area to lower (4–9%) mortality rates. Raising sweep cables off of the seafloor reduced red king crab mortality rates from 10% to 4%.
Resumo:
NOAA’s Coral Reef Conservation program (CRCP) develops coral reef management priorities by bringing together various partners to better understand threats to coral reef ecosystems with the goal of conserving, protecting and restoring these resources. Place-based and ecosystem-based management approaches employed by CRCP require that spatially explicit information about benthic habitats and fish utilization are available to characterize coral reef ecosystems and set conservation priorities. To accomplish this, seafloor habitat mapping of coral reefs around the U.S. Virgin Islands (USVI) and Puerto Rico has been ongoing since 2004. In 2008, fishery acoustics surveys were added to NOAA survey missions in the USVI and Puerto Rico to assess fish distribution and abundance in relation to benthic habitats in high priority conservation areas. NOAA’s National Centers for Coastal Ocean Science (NCCOS) have developed fisheries acoustics survey capabilities onboard the NOAA ship Nancy Foster to complement the CRCP seafloor habitat mapping effort spearheaded by the Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB). The integration of these activities has evolved on the Nancy Foster over the three years summarized in this report. A strategy for improved operations and products has emerged over that time. Not only has the concurrent operation of multibeam and fisheries acoustics surveys been beneficial in terms of optimizing ship time and resources, this joint effort has advanced an integrated approach to characterizing bottom and mid-water habitats and the fishes associated with them. CCMA conducts multibeam surveys to systematically map and characterize coral reef ecosystems, resulting in products such as high resolution bathymetric maps, backscatter information, and benthic habitat classification maps. These products focus on benthic features and live bottom habitats associated with them. NCCOS Centers (the Center for Coastal Fisheries and Habitat Research and the Center for Coastal Environmental Health and Biomolecular Research) characterize coral reef ecosystems by using fisheries acoustics methods to capture biological information through the entire water column. Spatially-explicit information on marine resources derived from fisheries acoustics surveys, such as maps of fish density, supports marine spatial planning strategies and decision making by providing a biological metric for evaluating coral reef ecosystems and assessing impacts from pollution, fishing pressure, and climate change. Data from fisheries acoustics surveys address management needs by providing a measure of biomass in management areas, detecting spatial and temporal responses in distribution relative to natural and anthropogenic impacts, and identifying hotspots that support high fish abundance or fish aggregations. Fisheries acoustics surveys conducted alongside multibeam mapping efforts inherently couple water column data with information on benthic habitats and provide information on the heterogeneity of both benthic habitats and biota in the water column. Building on this information serves to inform resource managers regarding how fishes are organized around habitat structure and the scale at which these relationships are important. Where resource managers require place-based assessments regarding the location of critical habitats along with high abundances of fish, concurrent multibeam and fisheries acoustics surveys serve as an important tool for characterizing and prioritizing coral reef ecosystems. This report summarizes the evolution of fisheries acoustics surveys onboard the NOAA ship Nancy Foster from 2008 to 2010, in conjunction with multibeam data collection, aimed at characterizing benthic and mid-water habitats in high priority conservation areas around the USVI and Puerto Rico. It also serves as a resource for the continued development of consistent data products derived from acoustic surveys. By focusing on the activities of 2010, this report highlights the progress made to date and illustrates the potential application of fisheries data derived from acoustic surveys to the management of coral reef ecosystems.