12 resultados para Araneomorphae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pholcidae (Haplogynae) encompasses 967 described species, of which only 14 have been cytogenetic analyzed. Several chromosomal features have already been described including presence of meta- and sub-metacentric chromosomes and sex determination chromosome system (SDCS) of the X, X1X2Y, and X1X2 types, which contrast with the telo- and acrocentric chromosomes and SDCS of the X1X2 type typical of entelegyne spiders. To obtain further cytogenetic information for the family, we examined two pholcid species, Crossopriza lyoni (Blackwall 1867) and Physocyclus globosus (Taczanowski 1874) using both conventional staining and silver staining techniques. Crossopriza lyoni exhibited 2n = 23 = 22 + X in males and 2n = 24 = 22 + XX in females, while P. globosus showed 2n = 15 = 14 + X and 4n = 30 = 28 + 2X, both in male adults, 2n = 16 = 14 + XX in female adults and embryos, and 2n = 15 = 14 + X in male embryos. Both species revealed predominately metacentric and submetacentric chromosomes and a SDCS of the X/XX type. The cytogenetic data obtained in this work and those already recorded for C. lyoni indicate interpopulational and intraspecific numerical chromosome variation, suggesting the presence of chromosomal races or cytotypes in this species. The intraindividual numerical chromosome variation observed in male adult specimens of P. globosus may be explained by the presence of cytoplasmatic bridges between germ cells. The use of the silver staining technique to reveal the nucleolar organizer region (NOR) showed that chromosome pairs 4 and 6 and the X chromosome in C. lyoni are telomeric NOR-bearers, and that the chromosome pair 2 in P. globosus possesses a proximal NOR in the long arm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As espécies de Nephila estão incluídas na família Nephilidae que pertence ao grupo das aranhas Entelegynae, o qual é considerado filogeneticamente derivado em relação aos outros grupos da ordem Araneae. Análises citogenéticas realizadas nas aranhas Entelegynae com técnicas de coloração convencional, têm mostrado que a maioria das espécies possui uniformidade cariotípica principalmente em relação a morfologia telo-acrocêntrica dos cromossomos e sistema cromossômico sexual (SCS) do tipo X1X20/X1X1X2X2. Além disso, estas análises têm demonstrado que algumas famílias de Entelegynae também possuem uniformidade cariotípica concernente ao número diplóide de cromossomos na maioria das suas espécies. Por outro lado, o emprego adicional de técnicas de coloração diferencial de regiões cromossômicas específicas em alguns representantes de Entelegynae têm revelado características que podem ser usadas para determinar os mecanismos envolvidos na evolução cromossômica e na diferenciação cariotípica de espécies relacionadas. Contudo, poucas espécies de Entelegynae tiveram seus cariótipos analisados com técnicas de coloração diferencial. O Brasil possui aproximadamente 4.000 espécies de Araneae descritas taxonomicamente; entretanto apenas cerca de 20 destas foram analisadas do ponto de vista citogenético. Considerando estas informações, o objetivo deste trabalho foi investigar o cariótipo de duas espécies de Nephila, Nephila clavipes e Nephila sexpunctata, com técnicas de coloração convencional e diferencial para determinar o número diplóide, a morfologia cromossômica, o tipo de SCS, e o padrão de distribuição da heterocromatina constitutiva (bandas C) e das regiões organizadoras de nucléolo (RONs) ativas, e comparar os dados obtidos com aqueles de espécies relacionadas, para estabelecer os mecanismos de evolução cromossômica...(Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No presente trabalho, seis espécies de aranhas pertencentes às famílias Oxyopidae e Theridiidae foram examinadas citogeneticamente, através de técnicas de coloração convencional e impregnação pelo íon prata. A análise de células mitóticas e meióticas coradas com Giemsa de quatro espécies de Oxyopidae, Hamataliwa sp., Peucetia flava, Peucetia rubrolineata e Oxyopes salticus revelou informações citogenéticas inéditas para a família. Metáfases espermatogoniais de Hamataliwa sp. mostraram o cariótipo 2n=26+X1X2, o qual corresponde ao maior número diplóide já descrito para a família. Células mitóticas de P. flava e P. rubrolineata exibiram 2n♂=20+X1X2 e 2n♂=20+X, respectivamente, indicando a ocorrência de uma variabilidade cariotípica dentro desse gênero. Os cromossomos dessas três espécies apresentaram morfologia acro/telocêntrica. Os resultados obtidos em O. salticus foram surpreendentes, pois revelaram 2n♂=10+X, o menor número cromossômico encontrado para Oxyopidae e o segundo menor registrado para aranhas do grupo Entelegynae, bem como morfologia meta/submetacêntrica da maioria dos cromossomos. Além disso, um indivíduo da amostra de O. salticus examinada apresentou um heteromorfismo nos elementos que constituem o primeiro par do cariótipo e um cromossomo B em algumas células. Em Hamataliwa sp. e O. salticus, as regiões organizadoras de nucléolo estavam localizadas sobre dois e três pares autossômicos, respectivamente. Em relação às duas espécies de Theridiidae, Argyrodes elevatus apresentou um cariótipo totalmente discrepante, quando comparado com aqueles já descritos para a família, uma vez que mostrou o número diplóide 2n♂=21, sistema cromossômico sexual do tipo X/XX e morfologia cromossômica meta/submetacêntrica. No entanto, as características cariotípicas verificadas na maioria dos exemplares de Nesticodes rufipes foram semelhantes aquelas mais freqüentes em aranhas ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genus Scytodes includes most species of the spider family Scytodidae. Until now, 187 species of the genus have been described. In spite of this great diversity, only three Scytodes species were karyotyped so far. The present paper provides for the first time karyotype analysis of two synanthropic species, Scytodes fusca and Scytodes itapevi. Furthermore, new data on karyotype of Scytodes globula are also provided using conventional and differential cytogenetical procedures. The diploid number in the genus Scytodes varied considerably, namely from 2n = 13 to 2n = 31. The diploid number found in S. globula (2n male = 13) is the lowest in haplogyne spiders with monocentric chromosomes. Except S. globula, this number has been found only in one haplogyne spider with monocentric chromosomes, namely Ochyrocera sp. (Ochyroceratidae). on the contrary, the diploid number of S. fusca (2n male = 31) is one of the highest diploid numbers recorded in haplogyne spiders. The degree of intrageneric variation found in the genus Scytodes is the highest recorded in araneomorph spiders with monocentric chromosomes so far. Some karyotype characteristics (diploid number, chromosome morphology, total chromosome length, and distribution of constitutive heterochromatin) allowed us to postulate a close relationship between S. globula and S. itapevi. According to the karyotype data, S. fusca is not closely related to these two species. This conclusion corroborates a recent taxonomic work that grouped S. globula, S. itapevi, and other four Scytodes species in the 'globula group'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiders have one pair of venom glands, and only a few families have reduced them completely (Uloboridae, Holarchaeidae) or modified them to another function (Symphytognathidae or Scytodidae, see Suter and Stratton 2013). All other 42,000 known spider species (99%) utilize their venom to inject it into prey items, which subsequently become paralysed or are killed. Spider venom is a complex mixture of hundreds of components, many of them interacting with cell membranes or receptors located mainly in the nervous or muscular system (Herzig and King 2013). Spider venom, as it is today, has a 300-million-yearlong history of evolution and adaptation and can be considered as an optimized tool to subdue prey. In Mesothelae, the oldest spider group with less than 100 species, the venom glands lie in the anterior part of the cheliceral basal segment. They are very small and do not support the predation process very effectively. In Mygalomorphae, the venom glands are well developed and fill the basal cheliceral segment more or less completely. Many of these 3,000 species are medium- to large-/very large-sized spiders, and they have created the image of being dangerous beasts, attacking and killing a variety of animals, including humans. Although this picture is completely wrong, it is persistent and contributes considerably to human arachnophobia. The third group of spiders, Araneomorphae or “modern spiders”, comprises 93% of all spider species. The venom glands are enlarged and extend to the prosoma; the openings of the venom ducts are moved from the convex to the concave side of the cheliceral fangs and enlarged as well. These changes save the chelicerae from the necessity of being large, and hence, on the average, araneomorph spiders are much smaller than mygalomorphs. Nevertheless, they possess relatively large venom glands, situated mainly in the prosoma, and may also have rather potent venom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venom glands are alreadypresent in theoldes t spider group, the Mesothelae. Theglands lie in the anterior portion of the cheliceral basal segment but are very small, and it is doubtful how much the venom contributes to the predatory success. In mygalomorph spiders, the well-developed venom glands are still in the basal segment of the chelicerae and produce powerful venom that is injected via the cheliceral fangs into a victim. In all other spiders (Araneomorphae), the venom glands have become much larger and reach into the prosoma where they can take up a considerable proportion of this body part. Only a few spiders have reduced their venom glands, either partially or completely (Uloboridae, Holarchaeidae and Symphytognathidae are usually mentioned) or modified them significantly (Scytodidae, see Suter and Stratton 2013). As well as using venom, spiders may also use their chelicerae to overwhelm an item of prey. It is primarily a question of size whether a spider chews up small arthropods without applying venom or if it injects venom first. Very small and/or defenceless arthropods are picked up and crashed with the chelicerae, while larger, dangerous or well-defended items are carefully approached and only attacked with venom injection. Some spiders specialize on prey groups, such as noctuid moths (several genera of bola spiders among Araneidae), web spiders (Mimetidae), ants (Zodarion species in Zodariidae, aphantochiline thomisids, several genera among Theridiidae, Salticidae, Clubionidae and Gnaphosidae) or termites (Ammoxenidae). However, these more or less monophagous species amount only to roughly 2 % of all known spider species, while 98 % are polyphagous. From these considerations, it follows that the majority of spider venoms are not tailored to any given invertebrate or insect group but are rather unspecialized to be effective over a broad spectrum of prey types that spiders naturally encounter.