973 resultados para Aqueous conditions
Resumo:
Aryl imidazole-1-sulfonates are efficiently cross-coupled with arylboronic acids and potassium aryltrifluoroborates using only 0.5 mol % of oxime palladacycles 1 under aqueous conditions at 110 °C. Under these simple phosphane-free reaction conditions a wide array of biaryl derivatives has been prepared in high yields. This methodology allows in situ phenol sulfonation and one-pot Suzuki arylation as well as the employment of microwave irradiation conditions.
Resumo:
Over the past decade, a great effort has been made by the chemical community to improve the efficiency of organic transformations and allow sustainable processes. Merging the use of supported and recyclable organocatalysts and aqueous conditions for the asymmetric synthesis of valuable molecules, has led to outstanding contributions in the area of green chemistry. Recent progresses in the field include the implementation of these methodologies in the large scale production of chiral molecules using automated flow chemistry.
Resumo:
The products of reactions of the pharmaceutical amide carbamazepine (CBZ) with strong acids under aqueous conditions were investigated by both powder and single crystal X-ray diffraction. Despite previous claims to the contrary, it was found that salt forms with CBZ protonated at the amide O atom could be isolated from reactions with both HCl and HBr. These forms include the newly identified hydrate phase [CBZ(H)][Cl]·H O. Reactions with other mineral acids (HI and HBF ) gave ionic cocrystalline (ICC) forms (CBZ· [acridinium][I ]·2.5I and CBZ·[H O ] [BF ] ·H O) as well as the salt form CBZ·[CBZ(H)][BF ]·0.5H O. Reaction 2 4 3 2 5 2 0.25 4 0.25 2 4 2 of CBZ with a series of sulfonic acids also gave salt forms, namely, [CBZ(H)][O SC H ], [CBZ(H)][O SC H (OH)]· 3 6 5 3 6 4 0.5H O, [CBZ(H)] [O SCH CH SO ], and [CBZ(H)][O SC H (OH) (COOH)]·H O. CBZ and protonated CBZ(H) 2 2 3 2 2 3 3 6 3 2 moieties can be differentiated in the solid state both by changes to molecular geometry and by differing packing preferences
Resumo:
The direct aldol reaction between methylglyoxal (40% aqueous solution) or phenylglyoxal monohydrate and ketones or aldehydes is catalyzed by N-tosyl-(S a)-binam-l-prolinamide to afford the corresponding chiral γ-oxo-β-hydroxy carbonyl compounds, mainly as anti isomers with enantioselectivities up to 97%.
Resumo:
The reaction of the bis(propane-1,3-diamine)copper(II) ion with paraformaldehyde and nitroethane in dry methanol under basic conditions produces a macrocyclic product, (cis-3,11-dimethyl-3,11-dinitro-1,5,9,13-tetraazacyclohexadecane)copper(II) perchlorate, in low yield, compared with the good yield obtained in the parallel chemistry possible even under aqueous conditions using palladium(II) as a template. The palladium complex was reduced with zinc amalgam in dilute aqueous acid to yield the metal-free 16-membered macrocyclic hexaamine, in this case re-complexed and characterised by an X-ray crystal structure as the (cis-3,11-dimethyl-1,5,9,13-tetraazacyclohexadecane-3,11-diamine)copper(II) perchlorate. The copper ion is found in a tetragonally elongated and trigonally-distorted octahedral environment, with all six of the ligand nitrogens coordinated, the two primary amine pendant groups occupying cis sites. (C) 2000 Elsevier Science S.A. All rights reserved.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS)supported on titanium sub-oxide (TiO22x) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO22x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25 photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.
Resumo:
Adsorption of small molecules on the Ni{111} and NiO{111} surfaces is investigated under UHV and elevated pressures (~10-1 mbar) of hydrogen and water. The molecules considered are chosen for their relevance to understanding the mechanism of enantioselective hydrogenation on Raney Nickel modified by chiral molecules. Adsorption of water onto, and its subsequent reaction with, oxygen-covered Ni{111} is dependent on the initial atomic oxygen coverage. An OH species (O1s binding energy 531.5eV), oriented perpendicular to the surface, forms at atomic oxygen coverages <0.25ML. The reaction does not consume all the adsorbed oxygen for coverages ≥0.12ML. The p(2×2) atomic oxygen uperstructure is unreactive, while an OH species is formed on the p(√3×√3) superstructure at binding energy 530.9eV. L-alanine is adsorbed on Ni{111} as a model chiral modifier molecule. At low coverages, alanine forms a presumed tridentate alaninate species for coverages ≥0.11ML at 250K. A minority, bidentate zwitterionic species forms at coverages >0.11ML, but was not observed at 300K. Saturation occurs at 0.25ML. At high alanine coverages (≥0.19ML) and H2 pressure (≥1×10-2 mbar), the tridentate L-alaninate converts to bidentate zwitterionic L-alanine at 300K. Thermal evolution of L-alanine on Ni{111} under varying hydrogen pressures is examined. Adsorption of L-alanine onto hydroxylated NiO{111} at 300K in UHV, mimicking a catalyst surface under aqueous conditions, yields the tridentate alaninate which is immune to the effects of elevated hydrogen pressure. Exposing the L-alanine/Ni{111} adsorption system to water (≤10-1 mbar) oxidises the surface and recreates the L-alanine/hydroxylated NiO{111} system. Pyruvic acid on Ni{111} is examined as a model for hydrogenation substrate adsorption. Behaviour is coverage dependent and several conformations are possible at low coverages (≤0.1ML). Annealing at coverages <0.2ML causes a condensation reaction, releasing water onto the surface. High coverages do not condense and a saturation coverage of ~0.35ML is found.
Resumo:
[EN] This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS) supported on titanium sub-oxide (TiO22x) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO22x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25 photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.
Resumo:
Die vorliegende Dissertation beschreibt die Verschmelzung der Konzepte von konjugierten Polyelektrolyten und amphiphilen Kammpolymeren in Form von konjugierten, Poly(2,7-carbazol)-basierenden Polyelektrolytkammpolymeren mit Poly(L-lysin)seitenketten sowie Alkyl- oder Polyethylenglykolsubstituenten. Die Synthese wurde durch die Suzuki-Polykondensation von monodispersen Makromonomeren erreicht. Hierbei fand die Precursor-Synthesestrategie Anwendung. In diesem Ansatz war die ε-Aminofunktion des Lysins mit einer Benzoyloxycarbonylschutzgruppe geschützt. Der Aufbau der benötigten monodispersen Makromonomere erfolgte durch die Kupplung von Poly(L-lysin)ketten an den Carbazolbaustein mittels eines aktivierten Esters. Eine Besonderheit der hergestellten Kammpolymere lag in den konformativen Eigenschaften seiner einzelnen Komponenten. Dabei konnte die Konformation der Poly(L-lysin)seitenketten infolge ihres Polyelektrolyt- und Peptidcharakters gezielt mit Hilfe des pH-Wertes und der Ionenstärke variiert werden, wohingegen das konjugierte Rückgrat seine steife Konformation beibehielt. Infolge des Polyelektrolytcharakters zeigte sich zudem, dass die Polymere in sauren und neutralen, wässrigen Lösungen zu großen Teilen in Form von Domänenstrukturen auftraten, während im Basischen eine sofortige Aggregation eintrat. Ein weiteres Merkmal der vorgestellten Polyelektrolytkammpolymere war ihr amphiphiler Charakter. Diese Amphiphilie der in dieser Arbeit vorgestellten Polyelektrolytkammpolymere beeinflusste dabei maßgeblich ihre unstrukturierte Anordnung in Lösung, in der festen Phase sowie an Oberflächen.
Resumo:
The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.
Resumo:
Meadowsweet was extracted in water at a range of temperatures (60–100 °C), and the total phenols, tannins, quercetin, salicylic acid content and colour were analysed. The extraction of total phenols followed pseudo first-order kinetics, the rate constant (k) increased from 0.09 ± 0.02 min−1 to 0.44 ± 0.09 min−1, as the temperature increased from 60 to 100 °C. An increase in temperature from 60 to 100 °C increased the concentration of total phenols extracted from 39 ± 2 to 63 ± 3 mg g−1 gallic acid equivalents, although it did not significantly affect the proportion of tannin and non-tannin fractions. The extraction of quercetin and salicyclic acid from meadowsweet also followed pseudo first-order kinetics, the rate constant of both compounds increasing with an increase in temperature up until 90 °C. Therefore, the aqueous extraction of meadowsweet at temperatures at or above 90 °C for 15 min yields extracts high in phenols, which may be added to beverages.
Resumo:
Aqueous 2,2-dimethoxyacetaldehyde (60% wt solution) is used as an acceptor in aldol reactions, with cyclic and acyclic ketones and aldehydes as donors, organocatalyzed by 10 mol % of N-tosyl-(Sa)-binam-l-prolinamide [(Sa)-binam-sulfo-l-Pro] at rt under solvent-free conditions. The corresponding monoprotected 2-hydroxy-1,4-dicarbonyl compounds are obtained in good yields and with high levels of diastereo- and enantioselectivity mainly as anti-aldols. In the case of 4-substituted cyclohexanones a desymmetrization process takes place to mainly afford the anti,anti-aldols. 2,2-Dimethyl-1,3-dioxan-5-one allows the synthesis of a useful intermediate for the preparation of carbohydrates in higher yield, de and ee than with l-Pro as the organocatalyst.
Resumo:
The aim of this study was to optimize the aqueous extraction conditions for the recovery of phenolic compounds and antioxidant capacity of lemon pomace using response surface methodology. An experiment based on Box–Behnken design was conducted to analyse the effects of temperature, time and sample-to-water ratio on the extraction of total phenolic compounds, total flavonoids, proanthocyanidins and antioxidant capacity. Sample-to-solvent ratio had a negative effect on all the dependent variables, while extraction temperature and time had a positive effect only on TPC yields and ABTS antioxidant capacity. The optimal extraction conditions were 95 oC, 15 min, and a sample-to-solvent ratio of 1:100 g/ml. Under these conditions, the aqueous extracts had the same content of TPC and TF as well as antioxidant capacity in comparison with those of methanol extracts obtained by sonication. Therefore these conditions could be applied for further extraction and isolation of phenolic compounds from lemon pomace.
Resumo:
OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of indicating loss of marginal seal in the composite restorations; the 3-step conventional adhesive system had better performance regarding microleakage in enamel on primary and permanent teeth.