979 resultados para Aquarium fishes
Resumo:
The pathology induced by the nematode Camallanus cotti in the aquarium fishes Beta splendens (beta fish) and Poecilia reticulata (guppy) consisted of gross and microscopic lesions, the former characterized by abdominal swelling with reddish parasites protruding from the anus in both fish hosts and the latter, similar in the beta fishes and guppies, by hemorrhage, congestion, edema, a few glandular elements, and extensive erosion areas in the rectum mucosa, with a marked thickening of the wall and absence of inflammatory infiltrate. Lesions were associated with the presence of several worms attached to the wall or free in the rectal lumen. This is the second reference of the parasite in Brazil and the first report of pathological findings related to this nematode species that is also briefly redescribed and illustrated for the first time on the basis of Brazilian samples.
Resumo:
Maps on lining papers.
Resumo:
Journal of Threatened Taxa | September 2009 | 1(9): 493-494
Resumo:
Summary: Fish tuberculosis is a common disease in aquarium fishes
Resumo:
As part of a program to understand the genetics of Amazonian ornamental fish, classical cytogenetics was used to analyze Symphysodon aequifasciatus, S. discus and S. haraldi, popular and expensive aquarium fishes that are endemic to the Amazon basin. Mitotic analyses in Symphysodon have shown some odd patterns compared with other Neotropical cichlids. We have confirmed that Symphysodon species are characterized by chromosomal diversity and meiotic complexity despite the fact that species share the same diploid number 2n = 60. An intriguing meiotic chromosomal chain, with up to 20 elements during diplotene/diakinesis, was observed in S. aequifasciatus and S. haraldi, whereas S. discus only contains typical bivalent chromosomes. Such chromosomal chains with a high number of elements have not been observed in any other vertebrates. We showed that the meiotic chromosomal chain was not sex related. This observation is unusual and we propose that the origin of meiotic multiples in males and females is based on a series of translocations that involved heterochromatic regions after hybridization of ancestor wild Discus species. Heredity (2009) 102, 435-441; doi: 10.1038/hdy.2009.3; published online 25 February 2009
Resumo:
This paper aims at studying the influence of photoperiod on the cultivation of Brycon orbignyanus (Valenciennes, 1849) (Osteichthyes, Characidae) post-larvae submitted to four treatments: 0L-24D (L=Light; D=Dark), 10 - L14D, 14L - 10D and 24L-0D, with 3 repetitions. Post-larvae measuring 7.8±0.7mm and weighting 3.5±0.8mg were distributed in 12 aquariums (10L), stocked with 12 post-larvae per aquarium. Fishes were fed daily with Artemia sp. nanplii, in 10 days experiment. A positive relationship between the survival rate (88.9±9.7%) observed in the treatment with 24 hours of luminosity, and the lowest (58.3±8.3%), in the treatment with 24 hours of darkness. No difference was showed (P>0.05) in the mean length and weight of the post-larvae, although there was greater heterogeneity among the post-larvae cultivated at the longer darkness period.
Resumo:
The visual biology of Hawaiian reef fishes was explored by examining their eyes for spectral sensitivity of their visual pigments and for transmission of light through the ocular media to the retina. The spectral absorption curves for the visual pigments of 38 species of Hawaiian fish were recorded using microspectrophotometry. The peak absorption wavelength (lambda(max)) of the rods varied from 477-502 nm and the lambda(max) of individual species conformed closely to values for the same species previously reported using a whole retina extraction procedure. The visual pigments of single cone photoreceptors were categorized, dependent on their lambda(max)-values, as ultraviolet (347-376 nm), violet (398-431 nm) or blue (439-498 nm) sensitive cones. Eight species possessed ultraviolet-sensitive cones and 14 species violet-sensitive cones. Thus, 47% of the species examined displayed photosensitivity to the short-wavelength region of the spectrum. Both identical and nonidentical paired and double cones were found with blue sensitivity or green absorption peaks (> 500 nm). Spectrophotometry of the lens, cornea, and humors for 195 species from 49 families found that the spectral composition of the light transmitted to the retina was most often limited by the lens (73% of species examined). Except for two unusual species with humor-limited eyes, Acanthocybium solandri (Scombridae) and the priacanthid fish, Heteropriacanthus cruentatus, the remainder had corneal-limited eyes. The wavelength at which 50% of the light was blocked (T50) was classified according to a system modified from Douglas and McGuigan (1989) as Type I, T50 < = 355 nm, (32 species); Type IIa, 355 < T50 < = 380 nm (30 species); Type IIb, 380 < T50 405 nm (84 species). Possession of UV-transmitting ocular media follows both taxonomic and functional lines and, if the ecology of the species is considered, is correlated with the short-wavelength visual pigments found in the species. Three types of short-wavelength vision in fishes are hypothesized: UV-sensitive, UV-specialized, and violet-specialized. UV-sensitive eyes lack UV blockers (Type I and IIa) and can sense UV light with the secondary absorption peak or beta peak of their longer wavelength visual pigments but do not possess specialized UV receptor cells and, therefore, probably lack UV hue discrimination. UV-specialized eyes allow transmission of UV light to the retina (Type I and IIa) and also possess UV-sensitive cone receptors with peak absorption between 300 and 400 nm. Given the appropriate perceptual mechanisms, these species could possess true UV-color vision and hue discrimination. Violet-specialized eyes extend into Type IIb eyes and possess violet-sensitive cone cells. UV-sensitive eyes are found throughout the fishes from at least two species of sharks to modern bony fishes. Eyes with specialized short-wavelength sensitivity are common in tropical reef fishes and must be taken into consideration when performing research involving the visual perception systems of these fishes. Because most glass and plastics are UV-opaque, great care must be taken to ensure that aquarium dividers, specimen holding containers, etc., are UV-transparent or at least to report the types of materials in use.
Resumo:
In this study prospects of marketing the indigenous ornamental fishes of kerala, point out that the export market, consumer preferences in the domestic ornamental fishes, SWOT (strength weakness opportunities and threats) analysis etc. The study notes that the product indigenous ornamental fishes are mostely marketed by exporters and suppliers rather than the retail aquarium shopkeepers. The research findings on the attributes of indigenous ornamental fishes that matches customers preference in aquarium fish.SWOT analysis was carried out to classify the results of the study into strengths,weakness,opportunities and threats faced by the ornamental fish industry in kerala. The marketers in the study show less market perception compaired to the exporters of India. Rather than market survey, interest and experience and raw materials availability inspires them. The developments for large scale marketing have to be carried out, ensuring the sustainable exploitation of the wild fish population by adopting conservation measures such as breeding programmes, quota implementation, setting up of natural sanctuaries to protect the natural resource of ornamental fishes.
Resumo:
This thesis Entitled Resource abundance and survival of indigenous ornamental fishes of central kerala with emphasis on handling and packing stress in puntius filamentosus (valenciennes).Kerala state is endowed with 41 west flowing and three east flowing rivers originating in the Western Ghats. These rivers and their vast network of tributaries and distributaries harbour rich and diversified fish fauna. Most of the freshwater fishes available in Kerala are highly appreciated as ornamental fishes in the national and international markets.Today the ornamental fish industry is one of the largest industries all over the world. The demand for ornamental fishes has been increasing steadily with the enlargement of the industry, such that the current demand for indigenous ornamental fishes have exceeded the supply. This has led to serious concern about the resources available in the country that can be utilised judiciously for the economic benefit of the state. With an aim to fill up the lacuna, a database of freshwater ornamental fishes of Kerala was created as part of the present study. Ornamental fishes destined for export marketing should thrive well in the aquarium conditions.The study reiterates fishes caught from different environmental conditions and feeding habits have a greater ability to adapt and acclimatise to an entirely new environment and food habits. Marketing studies based on the statistics available with Marine Products Export Development Authority show that these species are not being exported at the required level over the past 6 years, when compared to the availability in the water bodies of Kerala. Sustainable utilisation of these resources from the wild using modern management principles and code of conduct for responsible fishing are advisable until captive breeding technology is popularised.
Resumo:
The overall focus of the thesis involves the systematics,germplasm evaluation and pattern of distribution and abundance of freshwater fishes of kerala (india).Biodiversity is the measure of variety of Life.With the signing on the convention on biodiversity, the countries become privileged with absolute rights and responsibility to conserve and utilize their diverse resources for the betterment of mankind in a sustainable way. South-east Asia along with Africa and South America were considered to be the most biodiversity rich areas in the world .The tremendous potential associated with the sustainable utilization of fish germplasm resources of various river systems of Kerala for food, aquaculture and ornamental purposes have to be fully tapped for economic upliftment of fisherman community and also for equitable sharing of benefits among the mankind without compromising the conservation of the rare and unique fish germplasm resources for the future generations.The study was carried during April 2000 to December 2004. 25 major river systems of Kerala were surveyed for fish fauna for delineating the pattern of distribution and abundance of fishes both seasonally and geographically.The results of germplasm inventory and evaluation of fish species were presented both for the state and also river wise. The results of evaluation of fish species for their commercial utilization revealed that, of the 145, 76 are ornamental, 47 food and 22 cultivable. 21 species are strictly endemic to Kerala rivers. The revalidation on biodiversity status of the fishes assessed based on IUCN is so alarming that a high percentage of fishes (59spp.) belong to threatened category which is inclusive of 8 critically ndangered (CR), 36 endangered and 15 species under vulnerable (VU) category.The river wise fish germplasm inventory surveys were conducted in 25 major river systems of Kerala.The results of the present study is indicative of existence of several new fish species in the streams and rivulets located in remote areas of the forests and therefore, new exclusive surveys are required to surface fish species new to science, new distributional records etc, for the river systems.The results of fish germplasm evaluation revealed that there exist many potential endemic ornamental and cultivable fishes in Kerala. It is found imperative to utilize these species sustainably for improving the aquaculture production and aquarium trade of the country which would definitely fetch more income and generate employment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ornamental fish are more expensive in comparison with the other fish. It especially highlights in non-breeding fish (in imported one for importation costs). But of course, with entering the new and unhealthy fishes to aquarium or ponds, they may transmit a pathogen to others (interfere with Iran ornamental fish parasitic fauna). In this study (Dec. 2008- Sep. 2009), 400 fish gill arch from 4 species of ornamental fish (within focus on imported fish); namely, i.e. Goldfish (Carassius auratus), platyfish (Xiphophorus maculatus), Dwarf gourami (Colisa lalia) and Catfish (Hypostomus plecostomus) were inspected for gill ectoparasites and then pathologic effects (but in high- affected gill). In this study, seven protozoan and ten metazoan species, indeed seventeen parasite species were identified. Protozan parasites consist of: Trichodina spp. and Ichthyophthirius multifiliis were found in four fish species; Ichthyobodo necatrix (Costia necator/C. necatrix) and Cryptobia branchialis, were respectively found in Dwarf gourami and goldfish. The highest prevalence belongs to Ichthyophthirius (47%) in platyfish. Metazoan parasites consist of: Ancyrocephalus sp. (Dwarf gourami), Ancylodiscoides spp. (catfish and platyfish), Dactylogyrus vastator, D. baueri, D. formosus (only in goldfish) and Gyrodactylus spp. (in four fish species). The highest prevalence was related to Dactylogyrus vastator(82%) in goldfish. Histological effects in case with high prevalence of parasite were also observed, e.g., hypertrophy, Lamellar hyperplasia and fusion. In high-parasitized gill, there is dysfunction of gill.
Resumo:
Troglobitic (exclusively subterranean) organisms usually present, among their apomorphies related to the subterranean life (troglomorphisms), the regression of eyes and melanic pigmentation. The degree of regression varies among species, from a slight reduction to the complete loss of eyes and dark pigmentation, without a taxonomic correlation. While mechanisms of eye reduction have been intensively investigated in some troglobites such as the Mexican blind tetra characins, genus Astyanax, and the European salamander, Proteus anguinus, few studies have focused on pigmentation. The Brazilian subterranean ichthyofauna distinguishes not only by the species richness (23 troglobitic fishes so far known) but also by the variation in the degree of reduction of eyes and pigmentation. This study focused on Brazilian fishes completely devoid of melanic pigmentation: the characiform Stygichthys typhlops (Characidae) and the siluriforms Ancistrus formoso (Loricariidae), Rhamdiopsis sp.1 (Heptapteridae; from caves in the Chapada Diamantina, Bahia) and Rhamdiopsis sp. 2 (cave in Campo Formoso, Bahia). In order to investigate if such depigmentation is the result of blockage in some step in the melanogenesis, in vitro tests of administration of L-DOPA were done, using caudal-fin fragments extracted from living fish. Except for Rhamdiopsis sp. 2, all the studied species were DOPA(+), i.e., melanin was synthesized after L-DOPA administration. This indicates these fish do have melanophores but they are unable to convert L-tyrosine to L-DOPA. On the other hand, Rhamdiopsis sp. 2, like the albino specimens of Trichomycterus itacarambiensis previously studied (which correspond to one third of the population), are DOPA(-), either because the block of melanin synthesis occurs downstream in melanogenesis, which is probably the case with T. itacarambiensis (monogenic system in view of the phenotypic discontinuity), or because the so-called albinos do no possess melanophores. The physiological loss in the ability to synthesize melanin, apparently caused by different genetic processes in DOPA(+) and in DOPA(-) fishes, may co-exist in subterranean populations with a decrease in the density of melanophores, as observed in the pigmented two thirds of T. itacarambiensis population, a morphological reduction apparently controlled by polygenic systems producing a continuous phenotypic variation.
Resumo:
During the exploration and mapping of new caves in Serra do Ramalho karst area, southern Bahia state, cavers from the Grupo Bambuí de Pesquisas Espeleológicas - GBPE (Belo Horizonte) noticed the presence of troglomorphic catfishes (species with reduced eyes and/or melanic pigmentation), which we intensively investigated with regards to their ecology and behavior since 2005. Non-troglomorphic fishes regularly found in the studied caves were included in this investigation. We present here data on the natural history of two troglobitic (exclusively subterranean troglomorphic species) fishes - Rhamdia enfurnada Bichuette & Trajano, 2005 (Heptapteridae; Gruna do Enfurnado) and Trichomycterus undescribed species (Trichomycteridae; Lapa dos Peixes and Gruna da Água Clara), and non-troglomorphic Hoplias cf. malabaricus, probably a troglophile (able to form populations both in epigean and subterranean habitats) in the Gruna do Enfurnado, and Pimelodella sp., a species with a sink population in the Lapa dos Peixes.