992 resultados para Aquaculture System
Coastal aquaculture system in the Philippines: social equity, property rights and disregarded duties
Resumo:
The hydrodynamic characterization and the performance evaluation of an aerobic three phase fluidized bed reactor in wastewater fish culture treatment are presented in this report. The objective of this study was to evaluate the organic matter, nitrogen and phosphorous removal efficiency in a physical and biological wastewater treatment system of an intensive Nile Tilapia laboratory production with recirculation. The treatment system comprised of a conventional sedimentation basin operated at a hydraulic detention time HDT of 2.94 h and an aerobic three phase airlift fluidized bed reactor AAFBR operated at an 11.9 min HDT. Granular activated carbon was used as support media with density of 1.64 g/cm(3) and effective size of 0.34 mm in an 80 g/L constant concentration. Mean removal efficiencies of BOD, COD, phosphorous, total ammonia nitrogen and total nitrogen were 47%, 77%, 38%, 27% and 24%, respectively. The evaluated system proved an effective alternative for water reuse in the recirculation system capable of maintaining water quality characteristics within the recommended values for fish farming and met the Brazilian standards for final effluent discharges with exception of phosphorous values. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Vibrio are important during hatchery rearing. aquaculture phase and post-harvest quality of shrimps. Vibrio spp are of concern to shrimp farmers and hatchery operators because certain species can cause Vibriosis. Vibrio species are of concern to humans because certain species cause serious diseases.With the progress in aquaculture, intensive systems used for shrimp aquaculture create an artificial environment that increases bacterial growth. To maintain the productivity of such an intensive aquaculture, high inputs of fish protein have to be employed for feeding together with high levels of water exchange and the massive use of antibiotics/ probiotics / chemicals. It seems that the combination of these conditions favours the proliferation of vibrios and enhances their virulence and disease prevalence. The risk of a microbial infection is high, mainly at larval stages. The effect and severity are related to Vibrio species and dose, water, feed, shrimp quality and aquaculture management.Consumption of seafood can occasionally result in food-bome illnesses due to the proliferation of indigenous pathogens like Vibrio.Of the l2 pathogenic Vibrio species, 8 species are known to be directly food associated. Strict quality guidelines have been laid by the importing nations, for the food products that enter their markets. The microbiological quality requirement for export of frozen shrimp products is that V.cholerae, V.parahaemolyticus and V. vulnificus should be absent in 25g of the processed shrimp (Export Inspection Council of India, 1995). The mere presence of these pathogenic Vibrios is sufficient for the rejection of the exported product.The export rejections cause serious economic loss to the shrimp industry and might harm the brand image of the shrimp products from the countiy.There is a need for an independent study on the incidence of different pathogenic vibrios in shrimp aquaculture and investigate their biochemical characteristics to have a better understanding about the growth and survival of these organisms in the shrimp aquaculture niche. PCR based methods (conventional PCR, duplex PCR, multiplex-PCR and Real Time PCR) for the detection of the pathogenic Vibrios is important for rapid post-harvest quality assessment. Studies on the genetic heterogeneity among the specific pathogenic vibrio species isolated from shrimp aquaculture system provide; valuable information on the extent of genetic diversity of the pathogenic vibrios, the shrimp aquaculture system.So the present study was undertaken to study the incidence of pathogenic Vibrio spp. in Penaeus monodon shrimp hatcheries and aquaculture farms, to carry out biochemical investigations of the pathogenic Vibrio spp isolated from P. monodon hatchery and. aquaculture environments, to assess the effect of salt (NaCl) on the growth and enzymatic activities of pathogenic Vibrio spp., to study the effect of preservatives, and chemicals on the growth of pathogenic Vibrio spp. and to employ polymerase chain reaction (PCR) methods for the detection of pathogenic V ibrio spp.Samples of water (n=7) and post-larvae (n=7) were obtained from seven Penaeus monodon hatcheries and samples of water (n=5), sediment (n=5) and shrimp (n=5) were obtained from five P. monodon aquaculture farms located on the East Coast of lndia. The microbiological examination of water, sediment, post-larvae and shrimp samples was carried out employing standard methods and by using standard media.The higher bacterial loads were obtained in pond sediments which can be attributed to the accumulation of organic matter at the pond bottom which stimulated bacterial growth.Shrimp head. (4.78 x 105 +/- 3.0 x 104 cfu/g) had relatively higher bacterial load when compared to shrimp muscle 2.7 x 105 +/- 1.95 x 104 cfu/g). ln shrimp hatchery samples, the post-larvae (2.2 x 106 +/- 1.9 x 106 cfu/g) had higher bacterial load than water (5.6 x 103 +/- 3890 cfu/ml).The mean E.coli counts were higher in aquaculture pond sediment (204+/-13 cfu/g) and pond water (124+/-88 cfu/ml). Relatively lower Escherichia coli counts were obtained from shrimp samples (12+/-11 to 16+/-16.7 cfu/g). The presence of E.coli in aquaculture environment might have been from the source water. E.coli was not detected in hatchery waters and post-larvae.
Resumo:
Differences in culture duration, metamorphosis rate and the productivity in hatchery culture of M. rosenbergii using a closed system with natural and artificial brackish water were evaluated. Reuse of brackish water in more than one hatchery cycle was also evaluated. Natural and artificial brackish water constituted the two tested treatments, which were distributed in four independent recirculating systems (tank and respective biofilter). Four batches of cultures were conducted and the 2nd and 4th reused the water from the 1st and 3rd, respectively. Mean duration of the hatchery period was 28 d in natural brackish water and 31 d in artificial brackish water. The metamorphosis rate and the average productivity for the natural brackish water treatment were 74% and 60 postlarvae/ L. respectively, and values obtained with artificial brackish water were 55% and 44 postlarvae/L. The successful hatchery culture of M. rosenbergii in this specific artificial brackish water suggests its potential use in enterprises located far from the coast. Brackish water can be used in two consecutive cultures without a negative effect on productivity.
Resumo:
Herein, we have developed molecular markers for nuclear genes to use in multiplex-PCR and PCR-RFLP, with the goal of characterising hybrid lines derived from crosses between pintado Pseudoplatystoma corruscans and cachara P. reticulatum. These markers, together with others described previously, were used to perform molecular identification analyses as genetic subsidies for Brazilian aquaculture. These analyses were performed due to the problems of high mortality in the offspring reported by the aquaculturist. From a total of 16 broodstock samples, 13 were genetically identified as hybrids; surprisingly, nine of these hybrids were found to be post-F1 lineages. These data show that the fertility of these animals can seriously affect the cultivated stocks, thus causing financial damage in this aquaculture system. The establishment of PCR-RFLP and multiplex-PCR as molecular techniques allows for both the correct management of these animals and the routine monitoring of production and trade of fish hybrids in aquaculture. Consequently, such tools will enable a sustainable development in the aquaculture industry. © 2012 Blackwell Publishing Ltd.
Resumo:
The quality of fish cultured using recycling units may differ from that of fish from outdoor farming units due to a range of deviating environmental determinants. This applies not only to flesh quality but also to morphological (processing) traits. This study evaluates processing yields of sibling fish cultured in two different farming units: (i) an outdoor pond aquaculture system with a flow-through regime (24.6 ± 0.2°C), and (ii) indoor tanks using a recirculation aquaculture system (RAS; 26.0 ± 1.0°C). Clear differences were observed in the most important processing traits, i.e. skinned trunk and fillet yields, which were both significantly higher (P < 0.01) in RAS fish due to significantly smaller (P < 0.05) head weight in fish of the flow-through system. Skin represented a significantly higher (P < 0.01) proportion of total weight in both RAS males and females. The most obvious difference was in the deposited fat weight, which was significantly higher (P < 0.01) in RAS fish. Visceral fat deposits were significantly higher (P < 0.01) in females and ventral and dorsal fat deposits higher (P > 0.05) in males.
Resumo:
Penaeid shrimps are, perhaps, the most important fishery resource of the coastal waters of our country. Their exceptionally tasty. protein-rich flesh tops any seafood in foreign exchange earnings. No wonder, the demand of shrimp, the "Pinkish Gold of the Sea" (MPEDA. 1992). is increasing in the world market. The study of the growth of an organism is important in understanding the conditions under which optimum growth occurs. It is also important in getting an insight into the various factors that influence growth. Studies on the growth pattern of commercially important species of shrimp and of the factors that influence their growth rate are essential for the successful cultivation of shrimps.
Resumo:
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1 ), tryptose phosphate broth (2.95 g l 1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 lgml 1 chloramphenicol, 100 lgml 1 streptomycin and 100 IU ml 1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-20-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals
Resumo:
In this study, the costs and gross income related to the production of pacu Piaractus mesopotamicus juveniles were evaluated. This evaluation took into consideration a semi-intensive rearing, with direct stocking of the larvae into fertilized ponds (IL 0), or an initial intensive larviculture system, in which the larvae were fed in the laboratory for 3 (IL 3), 6 (IL 6), or 9 days (IL 9) before being transferred to the ponds. After 45 days of rearing, a gradual increase in production costs was observed as intensive larviculture time increased. Gross income also increased due to better survival rates (11.0, 25.3, 45.4, and 54.0% for IL 0, IL 3, IL 6, and IL 9, respectively). Therefore, increased profits were obtained under intensive larviculture (US$ 0.27, US$ 6.07, US$ 11.99, and US$ 13.16 per one thousand larvae in treatments IL 0, IL 3, IL 6, and IL 9, respectively). In a larger scale production simulation, the results obtained with initial intensive larviculture also showed evident economic advantages, confirming the feasibility of this system in comparison with the direct stocking of larvae in ponds for the production of pacu juveniles. © 2004 Elsevier B.V. All rights reserved.
Resumo:
To compare the removal efficiency of solids, turbidity and apparent color between a conventional and a column settling tanks in a recirculating aquaculture system (RAS) for tilapia farming. Materials and methods. Tilapia with a stocking density between 30 and 33 kg/m3 were cultured in a RAS consisting of a water level control box, PVC piping system, three plastic tanks for culture, conventional horizontal flow settling tank (Con.ST), column vertical flow settling tank (Col.ST), three phase fluidized bed reactor, oxygen transfer reactor, air compressor, air blower, centrifugal pump. The Con.ST operated at a volume of 1.4 m3 and hydraulic retention time (HRT) of 2.94 h; and was drained weekly for washing and sludge collection, representing a 55%discharge of system water volume. The Col.ST operated with a volume of 0.30 m3 and HRT of 0.553 h. Three daily partial draining operations were executed, representing a discharge of 50% of the system volume. Results. The mean solids removal efficiencies were: 34.01 and 44.44%for total solids; 64.45 and 71.71% for suspended solids; 21.10 and 45.65% volatile solids; 65.51% and 62.79% for turbidity; and 56.37 and 50.91% for apparent color, respectively for Con.ST and Col.ST. Conclusions. The two settling devices are useful on removal of the studied parameters and presented similar performance on turbidity and apparent color removal; however, the Col.ST was more efficient than Con.ST for solids removal, requires less space, less volume and requires less discharge water volume, displaying feasibility for its use on RAS.
Resumo:
The wastewater discharge produces impacts on receiving water bodies. Nutrients as P produce implications on lentic systems because they accelerate the eutrophication processes. Several technologies for P removal from the wastewater have been used: physic chemical treatment systems with important effects by coagulant products addition; biological processes based on anaerobic and aerobic conditions with great implications on the required volume; natural systems as stabilization ponds and irrigation require bigger areas and post-treatment processes. The aerobic fluidized bed reactors with internal circulation (AFBRIC) are compact options with high concentrations of active biomass that have demonstrated their capacity for organic matter and N removal. For sewage from the wastewater pumping station of Ilha Solteira city and effluents of a recirculation aquaculture system (RAS) for semi-intensive tilapia farming, the reactive P and total P removal efficiency in three AFBRIC with 250 mm external tube diameter and different internal tube diameter (ITD), for two different support media at different concentrations was evaluated. The average reactive P removal efficiency for domestic wastewater to hydraulic retention time (HRT) of 3 hours and 125 mm ITD reactor varied from 25,6 to 38,4% and with 150 mm ITD reactor varied from 27,5 to 32,5%; the average total P removal for the RAS wastewater at a HRT of 0,19 hours and 100 mm ITD was of 32,7%.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)