16 resultados para Aqüifero fissural
Resumo:
A research project is being developed by PPGG/UFRN and PETROBRAS in the Xaréu Oil Field located in Ceará Basin, Northeastern Brazil. The objective of the research is to characterize a fractured carbonate reservoir, the Trairi Limestone, in order to drill a borehole with two horizontal legs taking advantage of the natural fracture system to enhance the oil recovery. The present master thesis is part of this research and its contribution is to estimate fault orientation from unoriented cores, using the method proposed by Hesthammer & Henden (2000). In order to orient a fault cutting a bed observed in the core, the bed should be previously oriented. As additional constraint to orient the bed, we use regional bedding orientation obtained from structure maps of Trairi Limestone. Because the number of cores drilled from the Trairi Limestone was too small, we analyzed all cores from the field. As geologic constraint, we admit that all faults were formed as result of the South America and Africa separation, in the context of a regional dextral strike-slip fault formation. In this context, secondary faults are manly T and R faults according Riedel s classification. We analyzed 236.5 m of cores. The dip of bedding varies from 0o to 8o, being the most frequent value equal to 2o. We interpret this result as evidence that the deformation process was manly ruptil. 77 faults were identified in the cores. These faults strike manly to NW and NE with dips, in general, inside the interval 700 - 900. We suggest that the horizontal legs of the borehole should be oriented to NW and NE in order to improve the probability of intercepting open fractures and faults
Resumo:
The fissures aquifer northeast semi-arid Brazilian, present high text frequently of leave, with of low a hídric availability. The research has as objective main to analyze the components that inside influence in the salinity of the waterbearing fissures of an evaluation physicist-chemistry of the water, leading in consideration the physical interventions of the environment. One used techniques of interpretation of image of Landsat satellite -1999 and delimitation of the micro basin through the topographical map SUDENE. One identified waters of the NaCl type with Ca++ and Mg++ in secondary concentrations. The analyzed wells (15), had presented an average salinity of 5.147 mg/L of STD and a well only supplies drinking waters with 319 mg/L of STD. The recharge of the aquifer one if carries through for infiltration in the open fracture of ortognaisse it migmatization. The type and directions of the fracture do not control the STD. Relations between salinity and out let do not exist. The quality of the well of low salinity is identical the superficial waters (aquifer dam and alluvial). The studies of the meteoric erosion processes had evidenced that in the transformations of the rock in ground, the Ca++ and Na+ are taken for superficial waters. The treatment of the data chemical showed that the grade of Na+, Ca++, Mg++ and Cl-are controlled for the evaporation process, from only water that would have the qualities of superficial waters or the well of low salinity. Already the HCO3-grade is controlled for the precipitation of the dolomite. The STD of this aquifer one would be consequence of the high tax of evaporation of dams constructed in regions of plain topography. You leave them precipitated in deep argillaceous ones dry dams are led for the aquifer in first rains. The research suggests some recommendations for the use and exploitation of the water salinity in piscicultura, carcinicultura, culture of the grass-salt (Atriplex sp), among others
Resumo:
Northeastern Brazil is mainly formed by crystalline terrains (around 60% in area). Moreover, this region presents a semi-arid climate so that it is periodically subject to drought seasons. Furthermore, ground water quality extracted fromwells usually presents poor quality because of their high salinity contents. Nevertheless, ground water is still a very important source of water for human and animal consumption in this region. Well sitting in hard rocks terrains in Northeastern Brazil offers a mean success index of aboul 60%, given that a successful siting is defined by a well producing at least 0.5 m³/h. This low index reveals lack of knowledga about the true conditions of storage and percolation of ground water in crystalline rocks. Two models for structures storing and producing ground water in crystalline rocks in Northeastem Brazil have been proposed in the literature. The first model,tradnionally used for well sitting since the sixties are controlled by faults or fractures zones. This model is commonly referred, in Brazilian hydrogeological literature, as the "creek-crack" model (riacho-fenda in Portuguese). Sites appearing to present dense drainage network are preferred for water well siting - particularly at points where the drainages cross-cul each other. Field follow up work is usually based only on geological criteria. The second model is the "eluvio-alluvial through" (calha eluvio-aluvionar in Portuguese); it is also described in the literature but it is not yet incorporated in well sitting practice. This model is based on the hypothesis that reclilinear drainages can also be controlled by the folietion of the rock. Eventually, depending upon the degree of weathering, a through-shaped structure filled with sediments (alluvium and regolith) can be developed which can store and water can be produced from. Using severalfield case studies, this Thesis presents a thorough analysis ofthe two above cited models and proposes a new model. The analysis is based on an integrated methodological approach using geophysics and structural geology. Both land (Resitiviy and Ground Penetrating Radar- GPR) and aerogeophysical (magnetics and frequency domain eletromagnetics) surveys were used. Slructural analysis emphasized neolectonic aspects; in general, itwas found that fractures in the E-W direction are relatively open, as compared to fracturas inthe N-S direction, probably because E-W fractures were opened by the neotectonic stress regime in Northeastern Brazil, which is controlled by E-W compression and N-S extension. The riacho-fenda model is valid where drainages are controlled by fractures. The degree of fracturing and associated weathering dictale the hydrogeological potential of the structure. Field work in structural analogues reveals that subvertical fractures show consistent directions both in outcrop and aerophotograph scales. Geophysical surveys reveal subvertical conductive anomalies associated to the fracture network controlling the drainage; one of the borders of the conductive anomaly usually coincide wih the drainage. An aspect of particular importance to the validation of fracture control are the possible presence of relalively deep conductive anomalies wihoul continuation or propagalion to the surface. The conductive nature of lhe anomaly is due to the presence of wealhered rock and sedirnenls (alluvium and/or regolilh) storing ground waler which occur associated to the fracture network. Magnetic surveys are not very sensisnive to these structures.lf soil or covering sedirnents are resislive (> 100 Ohm.m), GPR can ba used to image precisely lhe fracture network. A major limialion of riacho-fenda model, revealed by GPR images, is associated to the fact thal subhorizontal fractures do play a very important role in connecting the fracture network, besides connect shallow recharge zones to relalively deep subvertical frecture zones. Iffractures play just a secondary control on the drainage, however, r/acho-fenda model may have a very limiled validny; in these cases, large portions oflhe drainage do nol coincide wilh frectures and mosl oflhewells localed in lhe drainage surrounding would resull dry. Usually, a secondary conlrol on lhe drainage by Ihefraclure networkcan be revealed only wilh detailed geophysical survey. The calha elClv1o-aluvlonarmodel is valid where drainages are conlrolled by folialion. The degree 01 wealhering 01 lhe lolialion planes dictales lhe hydrogeological polenlial 01 lhe slruclure. Outcrop analysis reveals Ihal lolialion and drainage direclions are parallel and Ihal no Iraclures, orfraclures wilh diflerent directions 01 lhe drainage direclion occur. Geophysical surveys reveal conduclive anomalies in a slab lorm associaled 10 lhe Ihrough 01 lhe wealhered rock and sedimenls (alluvium and/or regolith). Magnelic surveys can ofler a very good conlrol on lolialion direclion. An importanl aspect 10 validale lolialion conlrol are lhe presence 01 conductive anomalies showing shallow and deep portions area which are linked. Illhere is an exlensive soil cover, r/acho-fenda and calha eIClv1o-aluv/onar conlrols can be easily misinlerpreled in lhe absence 01 geophysical conlrol. Certainly, Ihis lacl could explain at leasl a part of lhe failure index in well sitting. The model wealhering sack (bolsllo de Intempertsmo in Portuguese) is proposed to explain cases where a very inlensive wealhering occur over lhe crystalline rock so Ihal a secondary inlerslilial porosity is crealed. The waler is Ihen stored in lhe porous of lhe regolilh in a similar mannerlo sedimentary rocks. A possible example ofthis model was delecled by using land geophysical survey where a relalivelyvery deep isolaled conduclive anomaly, in a slab form, was delected. Iflhis structure does store ground waler, certainly Ihere must be a link 01 lhe deep slructure wilh lhe surface in orderlo provide walerfeeding. This model mighl explain anomalous waler yields as greal as 50 m³/h Ihalsomelimescan occur in crystalline rocks in Northeaslern Brazil
Resumo:
Tese de Doutoramento, Geologia (Vulcanologia), 18 de Julho 2013, Universidade dos Açores.
Resumo:
2008
Resumo:
2008
Resumo:
2008
Resumo:
Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (N1000 km3 dense rock equivalent) and large-magnitude (NM8) eruptions produce areally extensive (104–105 km2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná–Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675– 2000 km3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of N1000 km3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian–Strombolian in style, with magma discharge rates of ~106–108 kg s−1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (b10 years). Most silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 109– 1011 kg s−1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 109 kg s−1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate N5000 km3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~1011 kg s−1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basaltdominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (NM8) basaltic eruptions have much shorter recurrence intervals of 103–104 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 105 years. The Paraná– Etendeka province was the site of at least nine NM8 silicic eruptions over an ~1 Myr period at ~132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro- Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface.
Resumo:
The island of São Jorge (38º 45’ 24’’ N - 28º 20’ 44’’W and 38º 33’ 00’’ N - 27º 44’ 32’’ W) is one of the nine islands of the Azores Archipelago that is rooted in the Azores Plateau, a wide and complex region which encompasses the triple junction between the American, Eurasia and Nubia plates. São Jorge Island has grown by fissural volcanic activity along fractures with the regional WNW-ESE trend, unveiling the importance of the regional tectonics during volcanic activity. The combination of the volcanostratigraphy (Forjaz & Fernandes, 1975; and Madeira, 1998) with geochronological data evidences that the island developed during two main volcanic phases. The first subaerial phase that occurred between 1.32 and 1.21 Ma ago (Hildenbrand et al. 2008) is recorded on the lava sequence forming the cliff at Fajã de São João, while the second phase started at 757 ka ago, is still active, and edified the rest of the island. This second phase edified the east side of the island that corresponds to Topo Volcanic Complex, in the period between 757 and 543 ka ago, while the west side named Rosais Volcanic Complex, started at 368 ka ago (Hildenbrand et al. 2008) and was still active at 117 ka ago. After the onset of Rosais, volcanic activity migrates to the center of São Jorge edifying Manadas Volcanic Complex. The volcanism on São Jorge is dominantly alkaline, with a narrow lithological composition ranging between the basanites/tefrites through the basaltic trachyandesites, in spite of this the two volcanic phases show distinct mineralogical, petrographic and geochemical characteristics that should be related with different petrogenetic conditions and growth rates of the island. Abstract viii During the first volcanic phase, growth rates are faster (≈3.4 m/ka), the lavas are slightly less alkaline and plagioclase-richer, pointing to the existence of a relative shallow and dynamic magma chamber where fractional crystallization associated with gravitational segregation and accumulation processes, produced the lavas of Fajã de São João sequence. The average growth rates during the second volcanic phase are lower (≈1.9 m/ka) and the lavas are mainly alkaline sodic, with a mineralogy composed by olivine, pyroxene, plagioclase and oxide phenocrysts, in a crystalline groundmass. The lavas are characterized by enrichment in incompatible trace element and light REE, but show differences for close-spaced lavas that unveil, in some cases, slight different degrees of fertilization of the mantle source along the island. These differences might also result from higher degrees of partial melting, as observed in the early stages of Topo and Rosais volcanic complexes, of a mantle source with residual garnet and amphibole, and/or from changing melting conditions of the mantle source as pressure. The subtle geochemical differences of the lavas contrast with the isotopic signatures, obtained from Sr-Nd-Pb-Hf isotopes, that São Jorge Island volcanism exhibit along its volcanic complexes. The lavas from Topo Volcanic Complex and from the submarine flank, i.e. the lavas located east of Ribeira Seca Fault, sample a mantle source with similar isotopic signature that, in terms of lead, overlaps Terceira Island. The lavas from Rosais and Manadas volcanic complexes, the western lavas, sample a mantle source that becomes progressively more distinct towards the west end of the island and that, in terms of lead isotopes, trends towards the isotopic composition of Faial Island. The two isotopic signatures of São Jorge, observed from the combination of lead isotopes with the other three systems, seem to result from the mixing of three distinct end-members. These end-members are (1) the common component related with the Azores Plateau and the MAR, (2) the eastern component with a FOZO signature and possibly related with the Azores plume located beneath Terceira, and (3) the western component, similar to Faial, where the lithosphere could have been entrained by an ancient magmatic liquid, isolated for a period longer than 2Ga. The two trends observed in the island reinforce the idea of small-scale mantle heterogeneities beneath the Azores region, as it has been proposed to explain the isotopic diversity observed in the Archipelago.
Resumo:
Perfis de alteração em basaltos com baixos teores de Ti02 (LTiB) da Parte Sudeste da Bacia do Paraná (SPB) associam-se a superfícies aplainadas, nos planaltos das Araucárias (Ab' Saber, 1973), entre altitudes de 950 m a 750 m (Vacaria) e 1000m a 920m (a Sul de Lages). Em domínios mais dissecados do relevo, que crescem de Este para Oeste, e nas encostas intensamente dissecadas destes planaltos a Sul (calha do rio Antas) e a Norte (calha do rio Pelotas), os perfis de alteração são truncados ou inexistentes. A associação dos perfis de alteração com superfícies geomorfológicamente mais antigas (aplainadas e elevadas) faz supor que o início dos processos de alteração seja correlativo às superfícies aplainadas, antigo e, provável mente, Terciário. As sequências de alteração mais completas localizam-se em morros de topo plano e apresentam as seguintes fácies: Rocha mãe, saprólito, alterito argiloso, alterito esferoidal, "stone line", coberturas móveis e solo atual. Químicamente os produtos de alteração intempérica dos basaltos são "lateritas" segundo definição de Schellmann (1981), com enriquecimento em Fe2D.3 e H20; perdas em Si02, FeO, MgO, CaO, Na20 e K20; prováveis pequenas perdas emA12D.3. No saprólito, os pedaços de rocha fragmentada permitiram a descrição das alterações hidrotermais refletidas nas para gêneses dos sítios intersticiais, constitui dos por materiais cristalinos e criptocristalinos. Os cristais de titanomagnetita aparecem com manchas azuis irregulares que sugerem variações cristaloquímicas contínuas dentro de um mesmo cristal, típicas da maghemitização. O alterito argiloso é sede de pseudomorfoses dos minerais magmáticos e hidrotermais. Esmectitas, ocupam os sítios das camadas mistas hidrotermais; halloysitas 7 e 10 Á são dominantes nos plasmas das pseudomorfoses de plagioclásios e plasmas ricos em ferro e sílica predominam nas pseudomorfoses de piroxênios. Observa-se a transição halloysita -caolinita desordenada rica em ferro estrutural nas partes superiores do conjunto. Os plasmas secundários são silico-aluminosos, nas partes baixas do conjunto, e predominantemente opacos no topo. Estes plasmas constituem-se de halloysita, litioforita (ou plasma rico em Mn), goethita e maghemita. O alterito esferoidal apresenta o núcleo de rocha e um córtex de cor amarelo -alaranjada em que se verifica a presença dominante da goethita aluminosa. Secundáriamente, aparecem cristobalita, maghemita e gibbsita. As coberturas móveis, são constitui das de plasma caolinítico e plasmas ricos em hematita e goethita. Aparecem ainda grânulos, pisólitos e nódulos herdados de antigas couraças desmanteladas. Os minerais, formados em condições lateritizantes, são os filossilicatos halloysita 7Á e lOÁ, caolinita desordenada e os óxidos e hidróxidos, hematita, goethita, gibbsita e litioforita.Observou-se que a mineralogia de alteração está intimamente associada à textura da rocha original. Encontram-se, ainda, nestes horizontes de alteração intempérica, a cristobalita (metaestável) e a titanomaghemita. As titanomaghemitas identificadas nos saprólitos e alteritos apresentam as características de maghemitização: diminuição da taxa 32(Fe+ Ti)/O, aumento de lacunas na malha cristalina e diminuição do parâmetro ~. Mg diminui com o intemperismo, Mn e AI se concentram nas fases magnéticas. A halloysita 7Á predomina sobre a lOÁ, na fração < 2Jlm, do alterito argiloso, alterito esferoidal e no sistema fissural. A caolinita predomina no horizonte "tacheté". No alterito esferoidal, ocorre também caolinita e esmectita. As argilas halloysíticas apresentam quatro morfologias: esferas, tubos, lamelas planares e cones. A halloysita forma-se preferencialmente à caolinita no córtex de alteração do alterito esferoidal e na fácies argilosa, constituindo um primeiro estágio de intemperismo. Os tubos e cones têm os menores teores de Fe2Ü3 enquanto as halloysitas planares têm os mais altos teores de Fe2Ü3. O teor de Fe das partículas esferoidais é variado. Os óxidos e hidróxidos destes perfis caracterizaram variações da atividade a água, de atividade da sílica dissolvida e temperatura, refletindo as paleocondições (climáticas) de formação destas coberturas fósseis.
Resumo:
Conforme a legislão brasileira, a gestão das águas subterrâneas está integrada à das águas superficiais nas quais estão localizadas os aqüiferos. Entretanto, não existe uma regulamentação específica que defina critérios e métodos de avaliação da qualidade ambiental, que caracterizem de forma completa este ambiente. A restrita bibliografia especializada que trata do assunto não é conclusiva quanto a aplicação de ensaios de toxidades aquática no monitoramente de águas subterrâneas. Assim, com o bjetivo de verificar a aplicabilidade dos ensaios de toxidadee padronizados para a avaliação da qualidade de águas subterrâneas potencialmente impactadas, foram avaliadas amostras provenientes de dois diferentes tipos de aqüiferos (livre e semiconfinado) localizados em uma área industrial da Região Metropolitana de Porto ALegre, RS, Brasil. Um total de 75 amostrras distribuídas em 19 poços de monitoramento foram analisadas quanto seus valores de pH, condutividade elétrica, cloretos, hidrocarbonetos, fenóis, nitrogênio amoniacal, sólidos dissolvidos totais e metais (Cd, Pb, Cu, Cr, Mn, Zn, Hg e Hi) e quanto à toxicidade crônica com Selenastrum capricornutum, Ceriodaphia dubia e Primephales promelas. As amostras foram coletadas semestralmente, sendo que o aqüifero livre foi amostrado de janeiro de 2001 a janeiro de 2003 e o aqüifero semiconfinado de fevereiro de 2002 a janeiro de 2003. Os resultados dos parâmetros químicos avaliados foram comparados, quando possível, a diferentes concentrações tidas como valores de referência (Portaria 1469/00 do Ministério da Saúde - Potabilidade), Lista Holandesa (valores de alerta - T) e Resolução nº 20/86 so CONAMA (Classe 2). A comparação dos resultados das anállises químicas diferentes de contaminação. Os valores de nitrogênio amoniacal, condutividade, fenóis, e hidrocarbonetos totais foram signitivamente maiores no aqüifero livre quando comparado ao aqüifero semiconfinado, enquanto os metais manganês e zinco apresentaram maiores concentrações no aqüifero semiconfinado. Para os demais parâmetros não foram detectadas diferenças estatiscamente significativas. Os resultados das análises ecotoxicológicas dos poços dos poços de monitoramente do aqüifero livre e semiconfinado acompanharam as diferenças químicas encontradas para os dois aqüiferos, demonstrando diferenças na qualidade das águas subterrâneas avaliadas Observou-se claramente uma maior incidência de valores negativos (inibição de crescimento ou reprodução), para os três níveis trtóficos, para as amostrras do aqüifero livre, quando em comparação as amostrras do aqüifero semiconfinado. Diferenças também foram verificadas nas respostas dos três niveis tróficos utilizadas, observando-se uma maior freqüência de amostrras tóxicas para alga S. capricormutum. O trrabalho apresenta ainda algumas correlações significativas ( =0,05) entrer as concentrações de determinados parâmetros com as toxidades detectados, tais como toxidade para C. dubla e nitrogênio amoniacal (r=0,39) e fenóis (r=0,394), toxidade para S. capricornutum e manganês (r=0,298), condutividade (r=0,393) e cobre (r=0,388) e Toxidade para P. promelas e pH (r=0, 484). Uma possível influência da matriz do solo sobre a toxicidade apresentada para S. capricornutum também é discutida. O trabalho conclui que ensaios de toxicidade com organismos aquáticos pode aplicados no monitoramento de águas subterrâneas. Entretanto, a interpretação dos resultados e as decisões a serem tomadas devem ser mais criteriosas, considerando-se um possível efeito da matriz original do solo sobre os organismos-teste utlizados.
Resumo:
O cisto nasolabial é classificado como um cisto fissural, localizado externamente ao tecido ósseo, na região correspondente ao sulco nasolabial e asa do nariz. Estes cistos são freqüentemente assintomáticos e geralmente promovem a elevação da asa do nariz. Apesar da sua difícil ocorrência, é importante reconhecermos as características desta lesão. O objetivo deste artigo é o de revisar a literatura e de discutir aspectos histológicos e etiológicos desta condição, bem como o tratamento por meio da excisão cirúrgica.
Resumo:
Moreira Gomes é um dos depósitos do campo mineralizado do Cuiú-Cuiú, província Aurífera do Tapajós, com recursos de 21,7 t de ouro. A zona mineralizada, com 1200 metros de comprimento, 30-50 metros de largura e, pelo menos, 400 metros de profundidade é controlada por uma estrutura subvertical de orientação E-W, associada a um sistema de falhas transcorrentes sinistrais. As rochas hospedeiras nesse depósito são predominantemente tonalitos de 1997 ± 2 Ma (Suite Intrusiva Creporizão). O estilo da alteração hidrotermal relacionado à mineralização é predominantemente fissural e localmente pervasivo. Os tipos de alteração hidrotermal são sericitização, carbonatação, cloritização, sulfetação, silicificação e epidotização, além da formação de veios de quartzo de espessuras variadas. Pirita é principal sulfeto e contém inclusões de galena, esfalerita, calcopirita e, em menor quantidade, de hessita e bismutinita. O ouro ocorre mais comumente como inclusão em cristais de pirita e, secundariamente, na forma livre em veios de quartzo. Ag, Pb e Bi foram detectados por análise semi-quantitativa como componentes das partículas de ouro. Estudo de inclusões fluidas identificou fluidos compostos por CO2 (Tipo 1), H2O-C O2-sal (Tipo 2) e H2O-sal (Tipo 3). O volátil CO2 é predominante na fase carbônica. O fluido do Tipo 2 apresenta densidade baixa a moderada, salinidade entre 1,6 e 11,8 % em peso equivalente de NaCl e foi aprisionado principalmente entre 280° e 350°C. No fluido do Tipo 3 o sistema químico pode conter aCl2 e, talvez, MgCl2, e a salinidade varia de zero a 10,1% em peso equivalente de NaCl. Apenas localmente a salinidade atingiu 25% em peso equivalente de NaCl. Esse fluido foi aprisionado principalmente entre 120° e 220°C e foi interpretado como resultado de mistura de fluido aquoso mais quente e levemente mais salino, com fluido mais frio e diluído. Globalmente, o estudo das inclusões fluidas indica estado heterogêneo durante o aprisionamento e ocorrência de separação de fases, mistura, flutuação de pressão e reequilíbrio das inclusões durante aprisionamento. A composição isotópica do fluido em equilíbrio com minerais hidrotermais (quartzo, clorita e calcita e pirita) e de inclusões fluidas apresenta valores de δ18O e δD entre +0,5 e +9,8 ‰, e -49 a -8 ‰, respectivamente. Os valores de 34S de pirita (-0,29 ‰ a 3,95 ‰) são provavelmente indicativos da presença de enxofre magmático. Pares minerais forneceram temperaturas de equilíbrio isotópico em geral concordante com as temperaturas de homogeneização de inclusões fluidas e compatíveis com as relações texturais. Os resultados isotópicos, combinados com os dados mineralógicos e de inclusões fluidas são interpretados como produto da evolução de um sistema magmático hidrotermal em três estágios. (1) Exsolução de fluido magmático aquoso e portador de CO2 entre 400°C e 320-350°C, seguido de separação de fases e precipitação principal da assembleia clorita-sericita-pirita-quartzo-ouro sob pressões menores que 2,1 kb e a 6-7 km de profundidade. (2) Resfriamento e continuação da exsolução do CO2 do fluido magmático geraram fluido aquoso, mais pobre a desprovido de CO2 e levemente mais salino, com aprisionamento dominantemente a 250°-280°C. A assembleia hidrotermal principal ainda precipitou, mas epidoto foi a principal fase nesse estágio. (3) Mistura do fluido aquoso do estágio 2, mais quente e mais salino, com um fluido aquoso mais frio e menos salino, de origem meteórica. Carbonatação está associada com esse estágio. A assembleia hidrotermal e os valores isotópicos indicam que fluido foi neutro a levemente alcalino e relativamente reduzido, que H2S (ou HS-) pode ter sido a espécie de enxofre predominante, e que Au(HS) -2 deve ter sido o complexo transportador de ouro. A deposição do ouro em Moreira Gomes ocorreu em resposta a diversos mecanismos, envolvendo a separação de fases, mistura e reações fluido-rocha. O depósito Moreira Gomes é interpretado como o produto de um sistema magmático-hidrotermal, mas não possui feições clássicas de depósitos relacionados a intrusões graníticas, tanto oxidadas como reduzidas. A idade de deposição do minério (1,86 Ga) sugere que o sistema magmático-hidrotermal pode estar relacionado com a fase final do extenso magmatismo cálcio-alcalino da Suíte Intrusiva Parauari, embora o magmatismo transicional a alcalino da Suíte Intrusiva Maloquinha não possa ser descartado.
Resumo:
As opalas de Pedro II e Buriti dos Montes, no estado do Piauí, constituem as mais importantes ocorrências brasileiras dessa gema, tanto em termos de volume quanto pela qualidade gemológica, que é comparável à das famosas opalas australianas. No entanto, a informalidade na extração e comercialização destas opalas, assim como a falta de informações quanto à gênese destes depósitos não permitem a prospecção por novas jazidas e o estabelecimento de um certificado de procedência para as opalas do Piauí que permitisse sua inserção formal no mercado gemológico internacional. Alguns autores têm se dedicado ao estudo dessas opalas, revelando fortes evidências de sua origem hidrotermal, mas até então, nenhum trabalho abordou as características físico-químicas dos fluidos que teriam originado esses depósitos de opalas. Diante disso, o principal objetivo deste trabalho foi entender o sistema hidrotermal responsável pela gênese das opalas do Piauí, ou seja, caracterizar os fluidos que originaram a mineralização e mostrar sua relação com o contexto geológico da região. Os municípios de Pedro II e Buriti dos Montes se localizam na porção nordeste do estado do Piauí, a aproximadamente 230 km a leste da capital Teresina, e as ocorrências de opala se encontram na porção basal da Bacia do Parnaíba, constituindo veios e vênulas nos arenitos dos grupos Serra Grande (Buriti dos Montes) e Canindé (Pedro II), os quais são seccionados por soleiras e diques de diabásio da Formação Sardinha. Elas também ocorrem cimentando brechas e como depósitos coluvionares e de paleocanal. Associados às opalas, localmente encontram-se veios de quartzo, calcedônia, barita e hematita (ou goethita). De maneira geral, as opalas de Pedro II apresentam jogo de cores, são predominantemente brancas ou azuladas com aspecto leitoso, semitranslúcidas a opacas e com inclusões sólidas pouco aparentes. Em contrapartida, as opalas de Buriti dos Montes não apresentam jogo de cores, a cor varia entre amarelo claro e vermelho amarronzado, são semitransparentes a translúcidas e contêm grande variedade de inclusões sólidas. Os dados obtidos revelam que as opalas de Pedro II são tipicamente do tipo amorfo (opala-A), enquanto as opalas de Buriti dos Montes variam entre amorfas e cristobalita-tridimita (opala-CT). Na opala preciosa, o típico jogo de cores é causado pelo arranjo regular das esferas de sílica que as constituem. A ausência de cimento opalino entre as esferas reforça a beleza desse efeito. Em contrapartida, as opalas laranja não apresentam jogo de cores, mas têm maior transparência devido ao diminuto tamanho das esferas. As inclusões sólidas também produzem belos efeitos nas opalas estudadas, principalmente na variedade laranja, que é mais transparente. Além disso, o conjunto de inclusões sólidas revela características intrínsecas aos processos hidrotermais que originaram as opalas estudadas. Agregados botrioidais, dendríticos e nodulares são exemplos de inclusões formadas por fragmentos dos arenitos hospedeiros carreados pelos fluidos hidrotermais que geraram as opalas. As inclusões sólidas também têm relação direta com a cor das opalas. Nas opalas de Buriti dos Montes, os tons de vermelho, laranja e amarelo são produzidos pela dissolução parcial das inclusões constituídas por oxihidróxidos de Fe. De maneira semelhante, a cor verde nas opalas preciosas está relacionada aos microcristais de Co-pentlandita inclusos nas mesmas. O conjunto de minerais associados às opalas conduz a uma assinatura mineralógicogeoquímica marcada pelos elevados teores de Fe e Al nas opalas com inclusões de hematita/goethita e caulinita, e assim também com aumento considerável dos teores de elementos terras raras nas opalas em que se concentram as inclusões de caulinita e apatita. Entre os elementos-traço, Ba é o mais abundante, e provavelmente foi incorporado pelo fluido hidrotermal, tendo em vista que veios de barita são encontrados com frequência nessa região da Bacia do Parnaíba. Várias feições como estruturas de fluxo nas opalas, corrosão e dissolução parcial dos cristais de quartzo hialino e de inclusões mineralógicas, vênulas de quartzo hidrotermal sobrecrescidas aos grãos detríticos, e zoneamento dos cristais de quartzo confirmam que essas opalas têm origem hidrotermal. A ruptura do Gondwana teria provocado um vasto magmatismo básico fissural, que por sua vez foi responsável pelo aporte de calor que gerou as primeiras células convectivas de fluidos quentes. A água contida nos arenitos certamente alimentou o sistema e se enriqueceu em sílica através da dissolução parcial ou total dos próprios grãos de quartzo dos arenitos. Este fluido hidrotermal foi posteriormente aprisionado em sistemas de fraturas e nelas se resfriou, precipitando a opala e minerais associados.
Resumo:
Central é um depósito aurífero do campo mineralizado do Cuiú-Cuiú, Província Aurífera do Tapajós, Cráton Amazônico. A zona mineralizada está hospedada em falha e compreende 800m de comprimento na direção NW-SE, seguindo o trend regional da província Tapajós, com largura entre 50 e 70m e profundidade vertical de pelo menos 450m. A mineralização está hospedada em monzogranito datado em 1984±3 Ma e atribuído à Suíte Intrusiva Parauari. Os recursos auríferos preliminarmente definidos são de 18,6t de ouro. A alteração hidrotermal é predominantemente fissural. Sericitização, cloritização, silicificação, carbonatação e sulfetação foram os tipos de alteração identificados. Pirita é o sulfeto principal e os demais sulfetos (calcopirita, esfalerita e galena) estão em fraturas ou nas bordas da pirita. O ouro preenche fraturas da pirita e análises semi-quantitativas detectaram Ag associada ao ouro. Foram identificados três tipos de inclusões fluidas hospedados em veios e vênulas de quartzo. O tipo 1 é o menos abundante e consiste em inclusões fluidas compostas por uma (CO2vapor) ou duas fases (CO2liq-CO2vapor), o tipo 2 tem abundância intermediária e é formado por inclusões fluidas compostas por duas (H2Oliq-CO2liq) ou três fases (H2Oliq-CO2liq-CO2vapor) e o tipo 3 é o mais abundante e consiste em inclusões fluidas compostas por duas fases (H2Oliq- H2Ovapor). O CO2 representa o volátil nas inclusões com CO2 e essas (tipo 1 e 2) foram geradas pelo processo de separação de fases oriundo de um fluido aquo-carbônico. A densidade global (0,33 - 0,80 g/cm³) e a salinidade (11,15 - 2,42 % em peso equivalente de NaCl) desse fluido são baixas a moderadas e a temperatura de homogeneização mostra um máximo em 340ºC. Quanto ao tipo 3, o NaCl é o principal sal, a densidade global está no intervalo de 0,65 a 1,11 g/cm³, a salinidade compreendida entre 1,16 e 13,3 % em peso equivalente de NaCl e a temperatura de homogeneização é bimodal, com picos em 120-140ºC e 180ºC. A composição isotópica das inclusões fluidas presentes no quartzo e do quartzo, calcita e clorita mostram valores de δ18O e δD de +7,8 a +13,6 ‰ e -15 a -35 ‰, respectivamente. Os valores de δ34S na pirita são de +0,5 a +4,0 ‰ e δ13C na calcita e CO2 de inclusões fluidas de -18 a -3,7 ‰. Os valores de δ18OH2O e de δDH2O no quartzo e inclusões fluidas, respectivamente, plotam no campo das águas metamórficas, com um desvio em direção à linha da água meteórica. Considerando a inexistência de evento metamórfico na região do Tapajós à época da mineralização, o sistema hidrotermal responsável pela mineralização no Central, inicialmente, deu-se a partir de fluidos aquo-carbônicos magmático-hidrotermais, exsolvidos por magma félsico relacionado com a fase mais tardia de evolução da Suíte Intrusiva Parauari. As inclusões aquo-carbônicas e carbônicas formaram-se nessa etapa, predominantemente em torno de 340°C. A contínua exsolução de fluido pelo magma levou ao empobrecimento em CO2 nas fases mais tardias e, com o resfriamento do fluido, as inclusões aquosas passaram a predominar. A partir daí o sistema pode ter interagido com água meteórica, responsável pelo aprisionamento da maior parte das inclusões aquosas de mais baixa temperatura. É possível que parte das inclusões aquosas (as de maior temperatura) represente a mistura local dos fluidos de origens distintas. Essas observações e interpretações permitem classificar Central como um depósito de ouro magmático-hidrotermal relacionado à fase final da formação da Suíte Intrusiva Parauari.