997 resultados para Aproximações (Matemática)
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
Pós-graduação em Educação - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O presente relatório foi realizado no âmbito da Prática do Ensino Supervisionado do Mestrado em Ensino de Matemática no 3.º Ciclo do Ensino Básico e no Secundário da Universidade da Madeira, no ano letivo 2011/2012, e tem como objetivo apresentar de forma sucinta, o trabalho desenvolvido pelo grupo ao longo da Prática Pedagógica, assim como analisar os diversos instrumentos de avaliação utilizados na disciplina de Matemática. As estratégias usadas no ensino foram apoiadas na aprendizagem pela descoberta e inspiradas nas práticas utilizadas do Modelo Pedagógico da Escola Moderna (MEM), procedendo por aproximações sucessivas a uma metamorfose das práticas educativas por decorrência das vivências realizadas nas aulas práticas. Esta pedagogia tem como intuito o envolvimento e a corresponsabilização dos alunos na sua própria aprendizagem, tendo em vista uma educação inclusiva que se traduza não só num aumento dos saberes de todos os alunos e no gosto em aprender. Procura-se adotar as metodologias utilizadas no MEM e no Projeto CEM aos alunos de uma turma do 8.º Ano e do 11.º Ano e analisa-se as diferentes posturas dos mesmos face às novas oportunidades de aprendizagem propostas. Este estudo foi aplicado nas diversas unidades lecionadas ao longo do estágio, partindo da seguinte questão orientadora: Como é que os portefólios e o feedback contribuem para a aprendizagem matemática dos alunos?
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Resumen: Se aplicó el Modelo de Crédito Parcial (MCP) de la Teoría de Respuesta al Ítem (TRI) al análisis de ítems de una escala que mide Afecto hacia la Matemática. Esta variable describe el interés de los estudiantes de Psicología por involucrarse en actividades vinculadas a la matemática y los sentimientos asociados al uso de sus conceptos. La prueba consta de 8 ítems con formato de respuesta Likert de 6 opciones. Participaron 1875 estudiantes de Psicología de la Universidad de Buenos Aires (Argentina) de los cuales un 82% fueron mujeres. El análisis de la consistencia interna brindó un índice altamente satisfactorio (Alfa = .91). Se verificó la condición de unidimensionalidad requerida por el modelo mediante un análisis factorial exploratorio. Todos los análisis basados sobre la TRI se realizaron con el programa Winsteps. La estimación de los parámetros del modelo se efectuó por Máxima Verosimilitud Conjunta. El ajuste del MCP fue satisfactorio para todos los ítems. La Función de Información del Test fue elevada en un rango amplio de niveles del rasgo latente. Un ítem presentó una inversión en dos parámetros de umbral. Como consecuencia, 1 de las 6 categorías del ítem no fue máximamente probable en ningún intervalo de la escala del rasgo latente. Se analizan las implicancias de este hallazgo en la evaluación de la calidad psicométrica del ítem. Los resultados de este estudio permitieron profundizar el análisis del constructo y aportaron evidencias de validez basadas en las estructura interna de la escala
Resumo:
514 p.
Resumo:
Qual a Filosofia da Natureza que podemos inferir da Física Contemporânea? Para Werner Karl Heisenberg, prêmio Nobel de Física de 1932, a ontologia da Ciência Moderna, estruturada no materialismo, no mecanicismo e no determinismo já não pode servir de fundamento para a nova Física. Esta requer uma nova base ontológica, onde o antirrealismo, seguido de um formalismo puro, aparece como o princípio basilar de uma nova Filosofia Natural. Este trabalho visa investigar o pensamento filosófico, a ontologia antirrealista, formalista, a abordagem da tradição filosófica e da história da ciência de Werner Heisenberg e sua contribuição para a interpretação da mecânica quântica.
Resumo:
Esta dissertação é o resultado do meu verouvirsentir e busca evidenciar que, nas relações desenvolvidas no processo do ensino da matemática, as histórias em quadrinhos podem-se revelar um instrumento eficaz para a aplicação de uma metodologia alternativa dotada de uma potência extraordinária na interlocução entre a criança e o conteúdo matemático. Nesse contexto, um dos maiores argumentos que encontro, ao final desta jornada, é que fica a percepção de que o livro didático adotado (referência para o conteúdo teoricoprático), em quase sua totalidade, não favorece que os alunos estabeleçam uma relação com a matemática pautada na atenção, curiosidade, alegria e outros fatores/elementos que permitam o crescimento cognitivo desses alunos na referida disciplina. A pesquisa é realizadasentida em uma escola particular de ensino fundamental e médio situada em Realengo em três turmas de 6 ano. Esses alunos variam entre 10 e 13 anos de idade e aproximadamente 90% deles são oriundos de famílias de classe média. Para realizarsentir esta pesquisa, percebo que, fundamentalmente, faço uso de duas metodologias que se revelam a priori: pesquisa-ação e o mergulho (ALVES, 2008). Realizo alguns diálogos que se consolidam como aporte teórico e que norteiam toda a minha escrita. Esses diálogos podem ou não aparecer nas citações que faço. Os diálogos invisibilizados pela minha escrita de modo algum foram menos importantes e tampouco são considerados menos relevantes, na verdade, conduzem minha escrita, misturando-se em minhas próprias palavras a ponto de se tornarem indissociáveis. Nesses diálogos, encontro-me com Michel de Certeau, Paulo Sgarbi, Nilda Alves, Humberto Maturana, Inês Barbosa, Von Foerster, Michel Focault, Edgard Morin, Will Eisner, Ginsburg, entre outros. Como resultados, ficou evidenciado que, ao oferecer a possibilidade de reescrita da teoria matemática através das histórias em quadrinhos, os alunos (na sua maioria) desenvolveram uma capacidade maior de concentração, atenção aos detalhes da própria teoria e a diminuição significativa da resistência ao conteúdo matemático. Uma velhanova linguagem? Em um velhonovo meio? Seja qual for a conclusão, a aventura do desafio na busca da construção de uma nova relação entre a criança e a matemática, por si só, permite a exposição de tensões e oportuniza o crescimento de todos. Nessa jornada, de ação em ação, busco fazer algo significativo.
Resumo:
Este trabalho apresenta uma modelagem matemática para o processo de aquecimento de um corpo exposto a uma fonte pontual de radiação térmica. O resultado original que permite a solução exata de uma equação diferencial parcial não linear a partir de uma seqüência de problemas lineares também é apresentado. Gráficos gerados com resultados obtidos pelo método de diferenças finitas ilustram a solução do problema proposto.
Resumo:
A presente dissertação propõe uma abordagem alternativa na simulação matemática de um cenário preocupante em ecologia: o controle de pragas nocivas a uma dada lavoura de soja em uma específica região geográfica. O instrumental teórico empregado é a teoria dos jogos, de forma a acoplar ferramentas da matemática discreta à análise e solução de problemas de valor inicial em equações diferenciais, mais especificamente, as chamadas equações de dinâmica populacional de Lotka-Volterra com competição. Essas equações, que modelam o comportamento predador-presa, possuem, com os parâmetros inicialmente utilizados, um ponto de equilíbrio mais alto que o desejado no contexto agrícola sob exame, resultando na necessidade de utilização da teoria do controle ótimo. O esquema desenvolvido neste trabalho conduz a ferramentas suficientemente simples, de forma a tornar viável o seu uso em situações reais. Os dados utilizados para o tratamento do problema que conduziu a esta pesquisa interdisciplinar foram coletados de material bibliográfico da Empresa Brasileira de Pesquisa Agropecuária EMBRAPA.
Resumo:
Uma dedução dos critérios de multicriticalidade para o cálculo de pontos críticos de qualquer ordem representa a formalização de ideias utilizadas para calcular pontos críticos e tricríticos e ainda amplia tais ideias. De posse desta dedução pode-se compreender os critérios de tricriticalidade e, com isso, através de uma abordagem via problema de otimização global pode-se fazer o cálculo de pontos tricríticos utilizando um método numérico adequado de otimização global. Para evitar um excesso de custo computacional com rotinas numéricas utilizou-se aproximações na forma de diferenças finitas dos termos que compõem a função objetivo. Para simular a relação P v - T optou-se pela equação de estado cúbica de Peng-Robinson e pela regra clássica de fluidos de van der Vaals, para modelagem do problema também se calculou os tensores de ordem 2, 3, 4 e 5 da função do teste de estabilidade. Os resultados obtidos foram comparados com dados experimentais e por resultados obtidos com outros autores que utilizaram métodos numéricos, equação de estado ou abordagem diferente das utilizadas neste trabalho.