933 resultados para Approximation Classes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La texture est un élément clé pour l’interprétation des images de télédétection à fine résolution spatiale. L’intégration de l’information texturale dans un processus de classification automatisée des images se fait habituellement via des images de texture, souvent créées par le calcul de matrices de co-occurrences (MCO) des niveaux de gris. Une MCO est un histogramme des fréquences d’occurrence des paires de valeurs de pixels présentes dans les fenêtres locales, associées à tous les pixels de l’image utilisée; une paire de pixels étant définie selon un pas et une orientation donnés. Les MCO permettent le calcul de plus d’une dizaine de paramètres décrivant, de diverses manières, la distribution des fréquences, créant ainsi autant d’images texturales distinctes. L’approche de mesure des textures par MCO a été appliquée principalement sur des images de télédétection monochromes (ex. images panchromatiques, images radar monofréquence et monopolarisation). En imagerie multispectrale, une unique bande spectrale, parmi celles disponibles, est habituellement choisie pour générer des images de texture. La question que nous avons posée dans cette recherche concerne justement cette utilisation restreinte de l’information texturale dans le cas des images multispectrales. En fait, l’effet visuel d’une texture est créé, non seulement par l’agencement particulier d’objets/pixels de brillance différente, mais aussi de couleur différente. Plusieurs façons sont proposées dans la littérature pour introduire cette idée de la texture à plusieurs dimensions. Parmi celles-ci, deux en particulier nous ont intéressés dans cette recherche. La première façon fait appel aux MCO calculées bande par bande spectrale et la seconde utilise les MCO généralisées impliquant deux bandes spectrales à la fois. Dans ce dernier cas, le procédé consiste en le calcul des fréquences d’occurrence des paires de valeurs dans deux bandes spectrales différentes. Cela permet, en un seul traitement, la prise en compte dans une large mesure de la « couleur » des éléments de texture. Ces deux approches font partie des techniques dites intégratives. Pour les distinguer, nous les avons appelées dans cet ouvrage respectivement « textures grises » et « textures couleurs ». Notre recherche se présente donc comme une analyse comparative des possibilités offertes par l’application de ces deux types de signatures texturales dans le cas spécifique d’une cartographie automatisée des occupations de sol à partir d’une image multispectrale. Une signature texturale d’un objet ou d’une classe d’objets, par analogie aux signatures spectrales, est constituée d’une série de paramètres de texture mesurés sur une bande spectrale à la fois (textures grises) ou une paire de bandes spectrales à la fois (textures couleurs). Cette recherche visait non seulement à comparer les deux approches intégratives, mais aussi à identifier la composition des signatures texturales des classes d’occupation du sol favorisant leur différentiation : type de paramètres de texture / taille de la fenêtre de calcul / bandes spectrales ou combinaisons de bandes spectrales. Pour ce faire, nous avons choisi un site à l’intérieur du territoire de la Communauté Métropolitaine de Montréal (Longueuil) composé d’une mosaïque d’occupations du sol, caractéristique d’une zone semi urbaine (résidentiel, industriel/commercial, boisés, agriculture, plans d’eau…). Une image du satellite SPOT-5 (4 bandes spectrales) de 10 m de résolution spatiale a été utilisée dans cette recherche. Puisqu’une infinité d’images de texture peuvent être créées en faisant varier les paramètres de calcul des MCO et afin de mieux circonscrire notre problème nous avons décidé, en tenant compte des études publiées dans ce domaine : a) de faire varier la fenêtre de calcul de 3*3 pixels à 21*21 pixels tout en fixant le pas et l’orientation pour former les paires de pixels à (1,1), c'est-à-dire à un pas d’un pixel et une orientation de 135°; b) de limiter les analyses des MCO à huit paramètres de texture (contraste, corrélation, écart-type, énergie, entropie, homogénéité, moyenne, probabilité maximale), qui sont tous calculables par la méthode rapide de Unser, une approximation des matrices de co-occurrences, c) de former les deux signatures texturales par le même nombre d’éléments choisis d’après une analyse de la séparabilité (distance de Bhattacharya) des classes d’occupation du sol; et d) d’analyser les résultats de classification (matrices de confusion, exactitudes, coefficients Kappa) par maximum de vraisemblance pour conclure sur le potentiel des deux approches intégratives; les classes d’occupation du sol à reconnaître étaient : résidentielle basse et haute densité, commerciale/industrielle, agricole, boisés, surfaces gazonnées (incluant les golfs) et plans d’eau. Nos principales conclusions sont les suivantes a) à l’exception de la probabilité maximale, tous les autres paramètres de texture sont utiles dans la formation des signatures texturales; moyenne et écart type sont les plus utiles dans la formation des textures grises tandis que contraste et corrélation, dans le cas des textures couleurs, b) l’exactitude globale de la classification atteint un score acceptable (85%) seulement dans le cas des signatures texturales couleurs; c’est une amélioration importante par rapport aux classifications basées uniquement sur les signatures spectrales des classes d’occupation du sol dont le score est souvent situé aux alentours de 75%; ce score est atteint avec des fenêtres de calcul aux alentours de11*11 à 15*15 pixels; c) Les signatures texturales couleurs offrant des scores supérieurs à ceux obtenus avec les signatures grises de 5% à 10%; et ce avec des petites fenêtres de calcul (5*5, 7*7 et occasionnellement 9*9) d) Pour plusieurs classes d’occupation du sol prises individuellement, l’exactitude dépasse les 90% pour les deux types de signatures texturales; e) une seule classe est mieux séparable du reste par les textures grises, celle de l’agricole; f) les classes créant beaucoup de confusions, ce qui explique en grande partie le score global de la classification de 85%, sont les deux classes du résidentiel (haute et basse densité). En conclusion, nous pouvons dire que l’approche intégrative par textures couleurs d’une image multispectrale de 10 m de résolution spatiale offre un plus grand potentiel pour la cartographie des occupations du sol que l’approche intégrative par textures grises. Pour plusieurs classes d’occupations du sol un gain appréciable en temps de calcul des paramètres de texture peut être obtenu par l’utilisation des petites fenêtres de traitement. Des améliorations importantes sont escomptées pour atteindre des exactitudes de classification de 90% et plus par l’utilisation des fenêtres de calcul de taille variable adaptées à chaque type d’occupation du sol. Une méthode de classification hiérarchique pourrait être alors utilisée afin de séparer les classes recherchées une à la fois par rapport au reste au lieu d’une classification globale où l’intégration des paramètres calculés avec des fenêtres de taille variable conduirait inévitablement à des confusions entre classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computation of a piecewise smooth function that approximates a finite set of data points may be decomposed into two decoupled tasks: first, the computation of the locally smooth models, and hence, the segmentation of the data into classes that consist on the sets of points best approximated by each model, and second, the computation of the normalized discriminant functions for each induced class. The approximating function may then be computed as the optimal estimator with respect to this measure field. We give an efficient procedure for effecting both computations, and for the determination of the optimal number of components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of real-valued functions defined on metric spaces, it is known that the locally Lipschitz functions are uniformly dense in the continuous functions and that the Lipschitz in the small functions - the locally Lipschitz functions where both the local Lipschitz constant and the size of the neighborhood can be chosen independent of the point - are uniformly dense in the uniformly continuous functions. Between these two basic classes of continuous functions lies the class of Cauchy continuous functions, i.e., the functions that map Cauchy sequences in the domain to Cauchy sequences in the target space. Here, we exhibit an intermediate class of Cauchy continuous locally Lipschitz functions that is uniformly dense in the real-valued Cauchy continuous functions. In fact, our result is valid when our target space is an arbitrary Banach space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a random medium consisting of N points randomly distributed so that there is no correlation among the distances separating them. This is the random link model, which is the high dimensionality limit (mean-field approximation) for the Euclidean random point structure. In the random link model, at discrete time steps, a walker moves to the nearest point, which has not been visited in the last mu steps (memory), producing a deterministic partially self-avoiding walk (the tourist walk). We have analytically obtained the distribution of the number n of points explored by the walker with memory mu=2, as well as the transient and period joint distribution. This result enables us to explain the abrupt change in the exploratory behavior between the cases mu=1 (memoryless walker, driven by extreme value statistics) and mu=2 (walker with memory, driven by combinatorial statistics). In the mu=1 case, the mean newly visited points in the thermodynamic limit (N >> 1) is just < n >=e=2.72... while in the mu=2 case, the mean number < n > of visited points grows proportionally to N(1/2). Also, this result allows us to establish an equivalence between the random link model with mu=2 and random map (uncorrelated back and forth distances) with mu=0 and the abrupt change between the probabilities for null transient time and subsequent ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a continuous map f : K -> M from a 2-dimensional CW complex into a closed surface, the Nielsen root number N(f) and the minimal number of roots mu(f) of f satisfy N(f) <= mu(f). But, there is a number mu(C)(f) associated to each Nielsen root class of f, and an important problem is to know when mu(f) = mu(C)(f)N(f). In addition to investigate this problem, we determine a relationship between mu(f) and mu((f) over tilde), when (f) over tilde f is a lifting of f through a covering space, and we find a connection between this problems, with which we answer several questions related to them when the range of the maps is the projective plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin-1/2 Ising model on a Bethe lattice in the mean-field limit, with the interaction constants following one of two deterministic aperiodic sequences, the Fibonacci or period-doubling one. New algorithms of sequence generation were implemented, which were fundamental in obtaining long sequences and, therefore, precise results. We calculate the exact critical temperature for both sequences, as well as the critical exponents beta, gamma, and delta. For the Fibonacci sequence, the exponents are classical, while for the period-doubling one they depend on the ratio between the two exchange constants. The usual relations between critical exponents are satisfied, within error bars, for the period-doubling sequence. Therefore, we show that mean-field-like procedures may lead to nonclassical critical exponents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the beginning of Physical Education entrance in the brazilin public schools, the game has been frequently used as content, and in the course of time that practice seems to be intensified. In spite of many approaches of different purposes to justify its pedagogic usefulness, the game has been used as an indiscriminate way due to the fascination that it provides to the students. The present study searches for a description and analysis of children`s (10-12 years old) attitudes behaviors in games, on Physical Education classes, inside a public school. The study was accomplished with the researcher also attending as a teacher (action research). For the accomplishment of the study 55 children were filmed in four different games, of different kinds (exposed, transformed, and spontaneous). The classes` description and analysis were focused in the attitude axis and it was defined four topics for the discussion: Conflicts, Respect of rules, Expressiveness, and Competitiveness. The relationship between the individual with the game and its culture were pointed as the main characteristics in the configuration of the ludicrous activity atmosphere. It was also possible to observe specific situations of this relationship, once the games were limited to the social games (Piaget category), in a school atmosphere where children have students roles. Due to the obtained results, the study proposes a reflexive practice in which the students notice their own attitudes and try to adapt the game to their needs and not he other way around. In this perspective, the teacher has an important mediator roll, once he will be responsible to point out the students` difficulties and promote discussions in favor to provide teamwork.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the calculation of the discrete approximation to the full spectrum for the tangent operator for the stability problem of the symmetric flow past a circular cylinder. It is also concerned with the localization of the Hopf bifurcation in laminar flow past a cylinder, when the stationary solution loses stability and often becomes periodic in time. The main problem is to determine the critical Reynolds number for which a pair of eigenvalues crosses the imaginary axis. We thus present a divergence-free method, based on a decoupling of the vector of velocities in the saddle-point system from the vector of pressures, allowing the computation of eigenvalues, from which we can deduce the fundamental frequency of the time-periodic solution. The calculation showed that stability is lost through a symmetry-breaking Hopf bifurcation and that the critical Reynolds number is in agreement with the value presented in reported computations. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the formulation of the nonlinear theory of H(infinity) control has been well developed, solving the Hamilton-Jacobi-Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H(infinity) control via output feedback are presented. An example is presented illustrating the application of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive an analytic expression for the matric flux potential (M) for van Genuchten-Mualem (VGM) type soils which can also be written in terms of a converging infinite series. Considering the first four terms of this series, the accuracy of the approximation was verified by comparing it to values of M estimated by numerical finite difference integration. Using values of the parameters for three soils from different texture classes, the proposed four-term approximation showed an almost perfect match with the numerical solution, except for effective saturations higher than 0.9. Including more terms reduced the discrepancy but also increased the complexity of the equation. The four-term equation can be used for most applications. Cases with special interest in nearly saturated soils should include more terms from the infinite series. A transpiration reduction function for use with the VGM equations is derived by combining the derived expression for M with a root water extraction model. The shape of the resulting reduction function and its dependency on the derivative of the soil hydraulic diffusivity D with respect to the soil water content theta is discussed. Positive and negative values of dD/d theta yield concave and convex or S-shaped reduction functions, respectively. On the basis of three data sets, the hydraulic properties of virtually all soils yield concave reduction curves. Such curves based solely on soil hydraulic properties do not account for the complex interactions between shoot growth, root growth, and water availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.