943 resultados para Approximate Bayesian computation, Posterior distribution, Quantile distribution, Response time data
Resumo:
The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.
Resumo:
We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.
Resumo:
Insect pest phylogeography might be shaped both by biogeographic events and by human influence. Here, we conducted an approximate Bayesian computation (ABC) analysis to investigate the phylogeography of the New World screwworm fly, Cochliomyia hominivorax, with the aim of understanding its population history and its order and time of divergence. Our ABC analysis supports that populations spread from North to South in the Americas, in at least two different moments. The first split occurred between the North/Central American and South American populations in the end of the Last Glacial Maximum (15,300-19,000 YBP). The second split occurred between the North and South Amazonian populations in the transition between the Pleistocene and the Holocene eras (9,100-11,000 YBP). The species also experienced population expansion. Phylogenetic analysis likewise suggests this north to south colonization and Maxent models suggest an increase in the number of suitable areas in South America from the past to present. We found that the phylogeographic patterns observed in C. hominivorax cannot be explained only by climatic oscillations and can be connected to host population histories. Interestingly we found these patterns are very coincident with general patterns of ancient human movements in the Americas, suggesting that humans might have played a crucial role in shaping the distribution and population structure of this insect pest. This work presents the first hypothesis test regarding the processes that shaped the current phylogeographic structure of C. hominivorax and represents an alternate perspective on investigating the problem of insect pests. © 2013 Fresia et al.
Resumo:
Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.'s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappe et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm.
Resumo:
Many modern statistical applications involve inference for complex stochastic models, where it is easy to simulate from the models, but impossible to calculate likelihoods. Approximate Bayesian computation (ABC) is a method of inference for such models. It replaces calculation of the likelihood by a step which involves simulating artificial data for different parameter values, and comparing summary statistics of the simulated data with summary statistics of the observed data. Here we show how to construct appropriate summary statistics for ABC in a semi-automatic manner. We aim for summary statistics which will enable inference about certain parameters of interest to be as accurate as possible. Theoretical results show that optimal summary statistics are the posterior means of the parameters. Although these cannot be calculated analytically, we use an extra stage of simulation to estimate how the posterior means vary as a function of the data; and we then use these estimates of our summary statistics within ABC. Empirical results show that our approach is a robust method for choosing summary statistics that can result in substantially more accurate ABC analyses than the ad hoc choices of summary statistics that have been proposed in the literature. We also demonstrate advantages over two alternative methods of simulation-based inference.
Resumo:
This paper investigates the feasibility of using approximate Bayesian computation (ABC) to calibrate and evaluate complex individual-based models (IBMs). As ABC evolves, various versions are emerging, but here we only explore the most accessible version, rejection-ABC. Rejection-ABC involves running models a large number of times, with parameters drawn randomly from their prior distributions, and then retaining the simulations closest to the observations. Although well-established in some fields, whether ABC will work with ecological IBMs is still uncertain. Rejection-ABC was applied to an existing 14-parameter earthworm energy budget IBM for which the available data consist of body mass growth and cocoon production in four experiments. ABC was able to narrow the posterior distributions of seven parameters, estimating credible intervals for each. ABC’s accepted values produced slightly better fits than literature values do. The accuracy of the analysis was assessed using cross-validation and coverage, currently the best available tests. Of the seven unnarrowed parameters, ABC revealed that three were correlated with other parameters, while the remaining four were found to be not estimable given the data available. It is often desirable to compare models to see whether all component modules are necessary. Here we used ABC model selection to compare the full model with a simplified version which removed the earthworm’s movement and much of the energy budget. We are able to show that inclusion of the energy budget is necessary for a good fit to the data. We show how our methodology can inform future modelling cycles, and briefly discuss how more advanced versions of ABC may be applicable to IBMs. We conclude that ABC has the potential to represent uncertainty in model structure, parameters and predictions, and to embed the often complex process of optimizing an IBM’s structure and parameters within an established statistical framework, thereby making the process more transparent and objective.
Resumo:
Extensive gene flow between wheat (Triticum sp.) and several wild relatives of the genus Aegilops has recently been detected despite notoriously high levels of selfing in these species. Here, we assess and model the spread of wheat alleles into natural populations of the barbed goatgrass (Aegilops triuncialis), a wild wheat relative prevailing in the Mediterranean flora. Our sampling, based on an extensive survey of 31 Ae. triuncialis populations collected along a 60 km × 20 km area in southern Spain (Grazalema Mountain chain, Andalousia, totalling 458 specimens), is completed with 33 wheat cultivars representative of the European domesticated pool. All specimens were genotyped with amplified fragment length polymorphism with the aim of estimating wheat admixture levels in Ae. triuncialis populations. This survey first confirmed extensive hybridization and backcrossing of wheat into the wild species. We then used explicit modelling of populations and approximate Bayesian computation to estimate the selfing rate of Ae. triuncialis along with the magnitude, the tempo and the geographical distance over which wheat alleles introgress into Ae. triuncialis populations. These simulations confirmed that extensive introgression of wheat alleles (2.7 × 10(-4) wheat immigrants for each Ae. triuncialis resident, at each generation) into Ae. triuncialis occurs despite a high selfing rate (Fis ≈ 1 and selfing rate = 97%). These results are discussed in the light of risks associated with the release of genetically modified wheat cultivars in Mediterranean agrosystems.
Resumo:
Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.
Resumo:
The estimation of effective population size from one sample of genotypes has been problematic because most estimators have been proven imprecise or biased. We developed a web-based program, ONeSAMP that uses approximate Bayesian computation to estimate effective population size from a sample of microsatellite genotypes. ONeSAMP requires an input file of sampled individuals' microsatellite genotypes along with information about several sampling and biological parameters. ONeSAMP provides an estimate of effective population size, along with 95% credible limits. We illustrate the use of ONeSAMP with an example data set from a re-introduced population of ibex Capra ibex.
Resumo:
Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.
Resumo:
Approximate Bayesian computation (ABC) is a popular family of algorithms which perform approximate parameter inference when numerical evaluation of the likelihood function is not possible but data can be simulated from the model. They return a sample of parameter values which produce simulations close to the observed dataset. A standard approach is to reduce the simulated and observed datasets to vectors of summary statistics and accept when the difference between these is below a specified threshold. ABC can also be adapted to perform model choice. In this article, we present a new software package for R, abctools which provides methods for tuning ABC algorithms. This includes recent dimension reduction algorithms to tune the choice of summary statistics, and coverage methods to tune the choice of threshold. We provide several illustrations of these routines on applications taken from the ABC literature.
Resumo:
BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.