955 resultados para Application level
Resumo:
NeSSi (network security simulator) is a novel network simulation tool which incorporates a variety of features relevant to network security distinguishing it from general-purpose network simulators. Its capabilities such as profile-based automated attack generation, traffic analysis and support for detection algorithm plug-ins allow it to be used for security research and evaluation purposes. NeSSi has been successfully used for testing intrusion detection algorithms, conducting network security analysis and developing overlay security frameworks. NeSSi is built upon the agent framework JIAC, resulting in a distributed and extensible architecture. In this paper, we provide an overview of the NeSSi architecture as well as its distinguishing features and briefly demonstrate its application to current security research projects.
Resumo:
With the increasing demand for document transfer services such as the World Wide Web comes a need for better resource management to reduce the latency of documents in these systems. To address this need, we analyze the potential for document caching at the application level in document transfer services. We have collected traces of actual executions of Mosaic, reflecting over half a million user requests for WWW documents. Using those traces, we study the tradeoffs between caching at three levels in the system, and the potential for use of application-level information in the caching system. Our traces show that while a high hit rate in terms of URLs is achievable, a much lower hit rate is possible in terms of bytes, because most profitably-cached documents are small. We consider the performance of caching when applied at the level of individual user sessions, at the level of individual hosts, and at the level of a collection of hosts on a single LAN. We show that the performance gain achievable by caching at the session level (which is straightforward to implement) is nearly all of that achievable at the LAN level (where caching is more difficult to implement). However, when resource requirements are considered, LAN level caching becomes much more desirable, since it can achieve a given level of caching performance using a much smaller amount of cache space. Finally, we consider the use of organizational boundary information as an example of the potential for use of application-level information in caching. Our results suggest that distinguishing between documents produced locally and those produced remotely can provide useful leverage in designing caching policies, because of differences in the potential for sharing these two document types among multiple users.
Resumo:
Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.
Resumo:
Power, and consequently energy, has recently attained first-class system resource status, on par with conventional metrics such as CPU time. To reduce energy consumption, many hardware- and OS-level solutions have been investigated. However, application-level information - which can provide the system with valuable insights unattainable otherwise - was only considered in a handful of cases. We introduce OpenMPE, an extension to OpenMP designed for power management. OpenMP is the de-facto standard for programming parallel shared memory systems, but does not yet provide any support for power control. Our extension exposes (i) per-region multi-objective optimization hints and (ii) application-level adaptation parameters, in order to create energy-saving opportunities for the whole system stack. We have implemented OpenMPE support in a compiler and runtime system, and empirically evaluated its performance on two architectures, mobile and desktop. Our results demonstrate the effectiveness of OpenMPE with geometric mean energy savings across 9 use cases of 15 % while maintaining full quality of service.
Resumo:
Most of architectures proposed for developing Distributed Virtual Environment (DVE) allow limited number of users. To support the development of applications using the internet infrastructure, with hundred or, perhaps, thousands users logged simultaneously on DVE, several techniques for managing resources, such as bandwidth and capability of processing, must be implemented. The strategy presented in this paper combines methods to attain the scalability required, In special the multicast protocol at application level.
Resumo:
Web content hosting, in which a Web server stores and provides Web access to documents for different customers, is becoming increasingly common. For example, a web server can host webpages for several different companies and individuals. Traditionally, Web Service Providers (WSPs) provide all customers with the same level of performance (best-effort service). Most service differentiation has been in the pricing structure (individual vs. business rates) or the connectivity type (dial-up access vs. leased line, etc.). This report presents DiffServer, a program that implements two simple, server-side, application-level mechanisms (server-centric and client-centric) to provide different levels of web service. The results of the experiments show that there is not much overhead due to the addition of this additional layer of abstraction between the client and the Apache web server under light load conditions. Also, the average waiting time for high priority requests decreases significantly after they are assigned priorities as compared to a FIFO approach.
Resumo:
AMS Subj. Classification: 00-02, (General)
Resumo:
Unified Enterprise application security is a new emerging approach for providing protection against application level attacks. Conventional application security approach that consists of embedding security into each critical application leads towards scattered security mechanism that is not only difficult to manage but also creates security loopholes. According to the CSIIFBI computer crime survey report, almost 80% of the security breaches come from authorized users. In this paper, we have worked on the concept of unified security model, which manages all security aspect from a single security window. The basic idea is to keep business functionality separate from security components of the application. Our main focus was on the designing of frame work for unified layer which supports single point of policy control, centralize logging mechanism, granular, context aware access control, and independent from any underlying authentication technology and authorization policy.
Resumo:
An understanding of application I/O access patterns is useful in several situations. First, gaining insight into what applications are doing with their data at a semantic level helps in designing efficient storage systems. Second, it helps create benchmarks that mimic realistic application behavior closely. Third, it enables autonomic systems as the information obtained can be used to adapt the system in a closed loop.All these use cases require the ability to extract the application-level semantics of I/O operations. Methods such as modifying application code to associate I/O operations with semantic tags are intrusive. It is well known that network file system traces are an important source of information that can be obtained non-intrusively and analyzed either online or offline. These traces are a sequence of primitive file system operations and their parameters. Simple counting, statistical analysis or deterministic search techniques are inadequate for discovering application-level semantics in the general case, because of the inherent variation and noise in realistic traces.In this paper, we describe a trace analysis methodology based on Profile Hidden Markov Models. We show that the methodology has powerful discriminatory capabilities that enable it to recognize applications based on the patterns in the traces, and to mark out regions in a long trace that encapsulate sets of primitive operations that represent higher-level application actions. It is robust enough that it can work around discrepancies between training and target traces such as in length and interleaving with other operations. We demonstrate the feasibility of recognizing patterns based on a small sampling of the trace, enabling faster trace analysis. Preliminary experiments show that the method is capable of learning accurate profile models on live traces in an online setting. We present a detailed evaluation of this methodology in a UNIX environment using NFS traces of selected commonly used applications such as compilations as well as on industrial strength benchmarks such as TPC-C and Postmark, and discuss its capabilities and limitations in the context of the use cases mentioned above.
Resumo:
The anticipated rewards of adaptive approaches will only be fully realised when autonomic algorithms can take configuration and deployment decisions that match and exceed those of human engineers. Such decisions are typically characterised as being based on a foundation of experience and knowledge. In humans, these underpinnings are themselves founded on the ashes of failure, the exuberance of courage and (sometimes) the outrageousness of fortune. In this paper we describe an application framework that will allow the incorporation of similarly risky, error prone and downright dangerous software artefacts into live systems – without undermining the certainty of correctness at application level. We achieve this by introducing the notion of application dreaming.
Resumo:
Network-based Intrusion Detection Systems (NIDSs) monitor network traffic for signs of malicious activities that have the potential to disrupt entire network infrastructures and services. NIDS can only operate when the network traffic is available and can be extracted for analysis. However, with the growing use of encrypted networks such as Virtual Private Networks (VPNs) that encrypt and conceal network traffic, a traditional NIDS can no longer access network traffic for analysis. The goal of this research is to address this problem by proposing a detection framework that allows a commercial off-the-shelf NIDS to function normally in a VPN without any modification. One of the features of the proposed framework is that it does not compromise on the confidentiality afforded by the VPN. Our work uses a combination of Shamir’s secret-sharing scheme and randomised network proxies to securely route network traffic to the NIDS for analysis. The detection framework is effective against two general classes of attacks – attacks targeted at the network hosts or attacks targeted at framework itself. We implement the detection framework as a prototype program and evaluate it. Our evaluation shows that the framework does indeed detect these classes of attacks and does not introduce any additional false positives. Despite the increase in network overhead in doing so, the proposed detection framework is able to consistently detect intrusions through encrypted networks.
Resumo:
Dedicated Short Range Communication (DSRC) is the emerging key technology supporting cooperative road safety systems within Intelligent Transportation Systems (ITS). The DSRC protocol stack includes a variety of standards such as IEEE 802.11p and SAE J2735. The effectiveness of the DSRC technology depends on not only the interoperable cooperation of these standards, but also on the interoperability of DSRC devices manufactured by various manufacturers. To address the second constraint, the SAE defines a message set dictionary under the J2735 standard for construction of device independent messages. This paper focuses on the deficiencies of the SAE J2735 standard being developed for deployment in Vehicular Ad-hoc Networks (VANET). In this regard, the paper discusses the way how a Basic Safety Message (BSM) as the fundamental message type defined in SAE J2735 is constructed, sent and received by safety communication platforms to provide a comprehensive device independent solution for Cooperative ITS (C-ITS). This provides some insight into the technical knowledge behind the construction and exchange of BSMs within VANET. A series of real-world DSRC data collection experiments was conducted. The results demonstrate that the reliability and throughput of DSRC highly depend on the applications utilizing the medium. Therefore, an active application-dependent medium control measure, using a novel message-dissemination frequency controller, is introduced. This application level message handler improves the reliability of both BSM transmissions/receptions and the Application layer error handling which is extremely vital to decentralized congestion control (DCC) mechanisms.
Resumo:
The main contribution of this project was to investigate power electronics technology in designing and developing high frequency high power converters for industrial applications. Therefore, the research was conducted at two levels; first at system level which mainly encapsulated the circuit topology and control scheme and second at application level which involves with real-world applications. Pursuing these objectives, varied topologies have been developed and proposed within this research. The main aim was to resolving solid-state switches limited power rating and operating speed while increasing the system flexibility considering the application characteristics. The developed new power converter configurations were applied to pulsed power and high power ultrasound applications for experimental validation.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.