924 resultados para Apoptotic Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptotic cells induce immunosuppression through unknown mechanisms. To identify the underlying molecular mediators, we examined how apoptotic cells induce immunoregulation by dendritic cells (DC). We found that administration of DC exposed to apoptotic c

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a reliable technique to freeze epididymal semen would provide a unique opportunity to preserve valuable genetic material from unexpectedly lost stallions. The aim of this study was to compare the apoptotic indices of sperm obtained from ejaculate, sperm recently recovered from the epididymides (EP), and sperm recovered from epididymides stored at 5 C for 24 hours (EP-stored). For the first category, two ejaculates from seven stallions were collected and then submitted to cryopreservation using an egg yolk-based extender. One week after the last semen collection, the stallions were submitted to bilateral orchiectomy, and sperm from one of the cauda epididymis was harvested immediately after castration (EP). The remaining testicle was stored in a passive refrigeration container at 5 C for 24 hours before the cauda epididymal sperm was harvested (EP-stored). Sperm harvesting from the epididymis for EP and EP-stored was performed by retrograde flushing of the caudal portion of the epididymis using a skim milk-based extender. The recovered sperm was then cryopreserved using the egg yolk-based extender. Sperm motility parameters were studied by computerassisted semen analysis, and apoptosis was estimated by measuring caspase activity and membrane phospholipid translocation using epifluorescence microscopy. The samples were evaluated immediately (0 hour) and 8 hours after thawing. At 0 hour, no differences in sperm parameters were observed among the groups, but after 8 hours, significant statistical differences were observed in sperm motility parameters and plasma membrane integrity among the treatment groups. In addition, viable cells with no apoptotic signs were more prevalent in EP and EP-stored, suggesting that epididymal sperm is less sensitive to the cold shock caused by sperm cryopreservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM rupture is not caused by a membrane stretching promoted by a markedly swollen matrix. It is shown that the widths of the ruptured regions of the OMM vary from 6 to 250 nm. Independent of the perforation size, herniation of the mitochondrial matrix appeared to have resulted in pushing the IMM through the perforation. A large, long focal herniation of the mitochondrial matrix, covered with the IMM, was associated with a rupture of the OMM that was as small as 6 nm. Contextually, the collapse of the selective permeability of the IMM may precede or follow the release of the mitochondrial proteins of the intermembrane space into the cytoplasm. When the MPT is a late event, exit of the intermembrane space proteins to the cytoplasm is unimpeded and occurs through channels that transverse the outer membrane, because so far, the inner membrane is impermeable. No channel within the outer membrane can expose to the cytoplasm a permeable inner membrane, because it would serve as a conduit for local herniation of the mitochondrial matrix. Anat Rec, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that the platelet-activating factor receptor (PAFR) is involved in the clearance of apoptotic cells by macrophages, and that this is associated with anti-inflammatory phenotype. Our group has previously shown that coinjection of a large number of apoptotic cells can promote tumor growth from a subtumorigenic dose of melanoma cells. Here, we studied the involvement of the PAFR in the tumor growth promoting effect of apoptotic cells. A sub-tumorigenic dose of melanoma cells (Tm1) was coinjected with apoptotic Tm1 cells, subcutaneously in the flank of C57Bl/6 mice, and the volume was monitored for 30 days. Animals received the PAFR antagonists, WEB2170 or PCA4248 (5 mg/kg body weight) or vehicle, by peritumoral daily injection for 5 days. Results showed that PAFR antagonists significantly inhibited the tumor growth induced by the coinjection of a subtumorigenic dose of melanoma cells together with apoptotic cells. This was accompanied by inhibition of early neutrophil and macrophage infiltration. Addition of (platelet-activating factor) to this system has no significant effect. PAFR antagonists did not affect the promoting effect of carrageenan. We suggest that the recognition of apoptotic cells by phagocytes leads to activation of PAFR pathways, resulting in a microenvironment response favorable to melanoma growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test a possible neuroprotective activity of 17β-estradiol in the neonatal rat brain exposed to hypoxic-ischemia (controlled hypoxia after unilateral carotid artery ligation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown previously that the binding of oxidized low-density lipoprotein (OxLDL) to resident mouse peritoneal macrophages can be inhibited (up to 70%) by the apoprotein B (apoB) isolated from OxLDL, suggesting that macrophage recognition of OxLDL is primarily dependent on its modified protein moiety. However, recent experiments have demonstrated that the lipids isolated from OxLDL and reconstituted into a microemulsion can also strongly inhibit uptake of OxLDL (up to 80%). The present studies show that lipid microemulsions prepared from OxLDL bind to thioglycollate-elicited macrophages at 4°C in a saturable fashion and inhibit the binding of intact OxLDL and also of the apoB from OxLDL. Reciprocally, the binding of the OxLDL-lipid microemulsions was strongly inhibited by intact OxLDL. A conjugate of synthetic 1-palmitoyl 2(5-oxovaleroyl) phosphatidylcholine (an oxidation product of 1-palmitoyl 2-arachidonoyl phosphatidylcholine) with serum albumin, shown previously to inhibit macrophage binding of intact OxLDL, also inhibited the binding of both the apoprotein and the lipid microemulsions prepared from OxLDL. Finally, a monoclonal antibody against oxidized phospholipids, one that inhibits binding of intact OxLDL to macrophages, also inhibited the binding of both the resolubilized apoB and the lipid microemulsions prepared from OxLDL. These studies support the conclusions that: (i) at least some of the macrophage receptors for oxidized LDL can recognize both the lipid and the protein moieties; and (ii) oxidized phospholipids, in the lipid phase of the lipoprotein and/or covalently linked to the apoB of OxLDL, likely play a role in that recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis is recognized as important for normal cellular homeostasis in multicellular organisms. Although there have been great advances in our knowledge of the molecular events regulating apoptosis, much less is known about the receptors on phagocytes responsible for apoptotic cell recognition and phagocytosis or the ligands on apoptotic cells mediating such recognition. The observations that apoptotic cells are under increased oxidative stress and that oxidized low-density lipoprotein (OxLDL) competes with apoptotic cells for macrophage binding suggested the hypothesis that both OxLDL and apoptotic cells share oxidatively modified moieties on their surfaces that serve as ligands for macrophage recognition. To test this hypothesis, we used murine monoclonal autoantibodies that bind to oxidation-specific epitopes on OxLDL. In particular, antibodies EO6 and EO3 recognize oxidized phospholipids, including 1-palmitoyl 2-(5-oxovaleroyl) phosphatidylcholine (POVPC), and antibodies EO12 and EO14 recognize malondialdehyde-lysine, as in malondialdehyde-LDL. Using FACS analysis, we demonstrated that each of these EO antibodies bound to apoptotic cells but not to normal cells, whereas control IgM antibodies did not. Confocal microscopy demonstrated cell-surface expression of the oxidation-specific epitopes on apoptotic cells. Furthermore, each of these antibodies inhibited the phagocytosis of apoptotic cells by elicited peritoneal macrophages, as did OxLDL. In addition, an adduct of POVPC with BSA also effectively prevented phagocytosis. These data demonstrate that apoptotic cells express oxidation-specific epitopes—including oxidized phospholipids—on their cell surface, and that these serve as ligands for recognition and phagocytosis by elicited macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The restriction of phosphatidylserine (PtdSer) to the inner surface of the plasma membrane bilayer is lost early during apoptosis. Since PtdSer is a potent surface procoagulant, and since there is an increased incidence of coagulation events in patients with systemic lupus erythematosus (SLE) who have anti-phospholipid antibodies, we addressed whether apoptotic cells are procoagulant and whether anti-phospholipid antibodies influence this. Apoptotic HeLa cells, human endothelial cells, and a murine pre-B-cell line were markedly procoagulant in a modified Russell viper venom assay. This procoagulant effect was entirely abolished by addition of the PtdSer-binding protein, annexin V, confirming that it was PtdSer-dependent. The procoagulant effect was also abolished by addition of IgG purified from the plasma of three patients with anti-phospholipid antibody syndrome, but not IgG from normal controls. Confocal microscopy of apoptotic cells stained with fluorescein-isothiocyanate-conjugated-annexin V demonstrated (Ca2+)-dependent binding to the surface of membrane blebs o apoptotic cells, but not to intracellular membranes. Recent data indicate that the surface blebs of apoptotic cells constitute an important immunogenic particle in SLE. We propose that the PtdSer exposed on the outside of these blebs can induce the production of anti-phospholipid antibodies, which might also enhance the immunogenicity of the bleb contents. When apoptosis occurs in a microenvironment in direct contact with circulating plasma, the unique procoagulant consequences of the apoptotic surface may additionally be expressed. This might explain the increased incidence of pathological intravascular coagulation events that occur in some lupus patients who have anti-phospholipid antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid clearance of dying cells is a vital feature of apoptosis throughout development, tissue homeostasis and resolution of inflammation. The phagocytic removal of apoptotic cells is mediated by both professional and amateur phagocytes, armed with a series of pattern recognition receptors that participate in host defence and apoptotic cell clearance. CD14 is one such molecule. It is involved in apoptotic cell clearance (known to be immunosuppressive and anti-inflammatory) and binding of the pathogen-associated molecular pattern, lipopolysaccharides (a pro-inflammatory event). Thus CD14 is involved in the assembly of two distinct ligand-dependent macrophage responses. This project sought to characterise the involvement of the innate immune system, particularly CD14, in the removal of apoptotic cells. The role of non-myeloid CD14 was also considered and the data suggests that the expression of CD14 by phagocytes may define their professional status as phagocytes. To assess if differential CD14 ligation causes the ligand-dependent divergence in macrophage responses, a series of CD14 point mutants were used to map the binding of apoptotic cells and lipopolysaccharides. Monoclonal antibodies, 61D3 and MEM18, known to interfere with ligand-binding and responses, were also mapped. Data suggests that residue 11 of CD14, is key for the binding of 61D3 (but not MEM18), LPS and apoptotic cells, indicating lipopolysaccharides and apoptotic cells bind to similar residues. Furthermore using an NF-kB reporter, results show lipopolysaccharides but not apoptotic cells stimulate NF-kB. Taken together these data suggests ligand-dependent CD14 responses occur via a mechanism that occurs downstream of CD14 ligation but upstream of NF-?B activation. Alternatively apoptotic cell ligation of CD14 may not result in any signalling event, possibly by exclusion of TLR-4, suggesting that engulfment receptors, (e.g. TIM-4, BAI1 and Stablin-2) are required to mediate the uptake of apoptotic cells and the associated anti-inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis is a highly controlled cell death programme that culminates in the exposure of molecular ‘flags’ at the dying cell surface that permit recognition and removal by viable phagocytes. Failure to efficiently remove dying cells can lead to devastating inflammatory and autoimmune disorders. The molecular mechanisms underlying apoptotic cell surface changes are poorly understood. Our previous work has shown an apoptosis-associated functional change in ICAM-3 (a heavily glycosylated, leukocyte-restricted Immunoglobulin Super-Family member) resulting in a molecular ‘flag’ to mediate corpse removal. Here we detail apoptosis-associated changes in ICAM-3 and define their role in ICAM-3’s novel function in apoptotic cell clearance. We show ICAM-3 functions to tether apoptotic leukocytes to macrophages via an undefined receptor. Though CD14 has been suggested as a possible receptor for apoptotic cell-associated ICAM-3, we demonstrate ICAM-3 functions for apoptotic cell clearance in the absence of CD14. Furthermore, we demonstrate leukocytes display early changes in cell surface glycosylation and a marked reduction in ICAM-3, a change that correlates reduced cell volume throughout apoptosis. This loss of ICAM-3 occurs via shedding of ICAM-3 in microparticles (‘apoptotic bodies’). Such microparticles are potent chemoattractants for macrophages. Notably, microparticles from ICAM-3-deficient leukocytes are significantly less chemoattractive than microparticles from their ICAM-3-replete counterparts. These data support the hypothesis that ICAM-3 acts as an apoptotic cell-associated ligand to tether dying cells to phagocytes in a CD14-independent manner. Furthermore our data suggest that released ICAM-3 may promote the recruitment of phagocytes to sites of apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.