995 resultados para Apolipoprotein A-I.
Resumo:
The anti-atherogenic role of high density lipoprotein is well known even though the mechanism has not been established. In this study, we have used a novel model system to test whether removal of lipoprotein cholesterol from a localized depot will be affected by apolipoprotein A-I (apo A-I) deficiency. We compared the egress of cholesterol injected in the form of cationized low density lipoprotein into the rectus femoris muscle of apo A-I K-O and control mice. When the injected lipoprotein had been labeled with [3H]cholesterol, the t½ of labeled cholesterol loss from the muscle was about 4 days in controls and more than 7 days in apo A-I K-O mice. The loss of cholesterol mass had an initial slow (about 4 days) and a later more rapid component; after day 4, the disappearance curves for apo A-I K-O and controls began to diverge, and by day 7, the loss of injected cholesterol was significantly slower in apo A-I K-O than in controls. The injected lipoprotein cholesterol is about 70% in esterified form and undergoes hydrolysis, which by day 4 was similar in control and apo A-I K-O mice. The efflux potential of serum from control and apo A-I K-O mice was studied using media containing 2% native or delipidated serum. A significantly lower efflux of [3H]cholesterol from macrophages was found with native and delipidated serum from apo A-I K-O mice. In conclusion, these findings show that lack of apo A-I results in a delay in cholesterol loss from a localized depot in vivo and from macrophages in culture. These results provide support for the thesis that anti-atherogenicity of high density lipoprotein is related in part to its role in cholesterol removal.
Resumo:
The structure of truncated human apolipoprotein A-I (apo A-I), the major protein component of high density lipoprotein, has been determined at 4-Å resolution. The crystals comprise residues 44–243 (exon 4) of apo A-I, a fragment that binds to lipid similarly to intact apo A-I and that retains the lipid-bound conformation even in the absence of lipid. The molecule consists almost entirely of a pseudo-continuous, amphipathic α-helix that is punctuated by kinks at regularly spaced proline residues; it adopts a shape similar to a horseshoe of dimensions 125 × 80 × 40 Å. Four molecules in the asymmetric unit associate via their hydrophobic faces to form an antiparallel four-helix bundle with an elliptical ring shape. Based on this structure, we propose a model for the structure of apo A-I bound to high density lipoprotein.
Resumo:
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.
Resumo:
L’adhésine impliquée dans l’adhérence diffuse (AIDA-I) est une adhésine bactérienne présente chez certaines souches d’Escherichia coli qui, associée aux toxines Stx2e ou STb, contribue à l’apparition de la maladie de l’œdème ou de la diarrhée post-sevrage chez les porcelets. AIDA-I est un autotransporteur qui confère des capacités d’autoaggrégation, de formation de biofilms et d’adhésion. L’objectif principal du projet de recherche consistait en la recherche de récepteur(s) potentiel(s) d’AIDA-I. Les bactéries pathogènes adhèrent aux cellules-cibles soit en liant directement des molécules à la surface cellulaire ou en utilisant des molécules intermédiaires qui permettent de diminuer la distance séparant la bactérie de la cellule-cible. Puisque le sérum est un fluide qui contient de nombreuses molécules, celui-ci a été utilisé comme matériel de départ pour l’isolement de récepteur(s) potentiels. Nous avons isolé un récepteur potentiel à partir du sérum porcin : l’apolipoprotéine A-I. L’interaction entre l’apolipoprotéine A-I et AIDA-I a été confirmée par ELISA et microscopie à fluorescence. La capacité à envahir les cellules épithéliales offre aux pathogènes la possibilité d’établir une niche intracellulaire qui les protègent contre les attaques du milieu extérieur. La présente étude a démontré que la présence d’AIDA-I en tant que seul facteur de virulence chez une souche de laboratoire permet de conférer la capacité d’envahir les cellules sans promouvoir la survie intracellulaire. L’étude de la souche sauvage 2787, exprimant AIDA-I en association avec d’autres facteurs de virulence, a démontré une différence significative pour les phénotypes d’invasion et de survie intracellulaire face à la souche de laboratoire exprimant AIDA-I.
Resumo:
Les effets bénéfiques des lipoprotéines de haute densité (HDL) contre l'athérosclérose ont été attribués, en grande partie, à leur composante protéique majeure, l'apolipoprotéine A-I (apoA-I). Cependant, il y a des indications que l'apoA-I peut être dégradée par des protéases localisées dans les plaques athérosclérotiques humaines, ce qui pourrait réduire l'efficacité des thérapies basées sur les HDL sous certaines conditions. Nous décrivons ici le développement et l'utilisation d'une nouvelle sonde bioactivatable fluorescente dans le proche infrarouge, apoA-I-Cy5.5, pour l'évaluation des activités protéolytiques spécifiques qui dégradent l'apoA-I in vitro, in vivo et ex vivo. La fluorescence basale de la sonde est inhibée par la saturation du fluorophore Cy5.5 sur la protéine apoA-I, et la fluorescence émise par le Cy5.5 (proche infrarouge) est révélée après clivage de la sonde. La protéolyse in vitro de l'apoA-I par des protéases a montré une augmentation de la fluorescence allant jusqu'à 11 fois (n=5, P ≤ 0.05). En utilisant notre nouvelle sonde apoA-I-Cy5.5 nous avons pu quantifier les activités protéolytiques d'une grande variété de protéases, incluant des sérines (chymase), des cystéines (cathepsine S), et des métalloprotéases (MMP-12). En outre, nous avons pu détecter l'activation de la sonde apoA-I-Cy5.5 sur des sections d'aorte de souris athérosclérotiques par zymographie in situ et avons observé qu'en présence d'inhibiteurs de protéases à large spectre, la sonde pourrait être protégée des activités protéolytiques des protéases (-54%, n=6, P ≤ 0,001). L'infusion in vivo de la sonde apoA-I-Cy5.5 dans les souris athérosclérotiques (Ldlr -/--Tg (apoB humaine)) a résulté en utilisant un système d'imagerie moléculaire combinant la fluorescence moléculaire tomographique et la résonance magnétique,en un signal de fluorescence dans l'aorte plus important que celui dans les aortes des souris de type sauvage C57Bl/6J (CTL). Les mesures in vivo ont été confirmées par l'imagerie ex vivo de l'aorte qui a indiqué une augmentation de 5 fois du signal fluorescent dans l'aorte des souris ATX (n=5) par rapport à l'aorte des souris (n=3) CTL (P ≤ 0,05). L'utilisation de cette sonde pourrait conduire à une meilleure compréhension des mécanismes moléculaires qui sous-tendent le développement et la progression de l'athérosclérose et l'amélioration des stratégies thérapeutiques à base de HDL.
Resumo:
OBJECTIVE: The present study was carried out to determine effects of test meals of different fatty acid compositions on postprandial lipoprotein and apolipoprotein metabolism. DESIGN: The study was a randomized, single blind design. SETTING: The study was carried out in the Clinical Investigation Unit of the Royal Surrey County Hospital. SUBJECTS: Twelve male normal subjects with an average age of 22.4 +/- 1.4 years (mean +/- SD) were selected from the student population of the University of Surrey; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: The subjects were given three evening test meals on three separate occasions, in which the oils used were either a mixed oil (rich in saturated fatty acids and approximated the fatty acid intake of the current UK diet), corn oil (rich in n-6 fatty acids), or fish oil (rich in n-3 fatty acids) 40 g of the oil under investigation were incorporated into a rice-based test meal. Triacylglycerol-rich lipoproteins-triacylglycerol (TRL-TAG), TRL-cholesterol (TRL-cholesterol), plasma-TAG, plasma cholesterol (T-C), and serum apolipoprotein A-I and B (apo A-I and B) responses were measured. Postprandial responses were followed for 11 h. RESULTS: Postprandial plasma-TAG responses, calculated as incremental areas under the response curves (IAUC) were significantly reduced following the fish oil meal [365.5 +/- 145.4 mmol/l x min (mean +/- SD)[ compared with the mixed oil meal (552.0 +/- 141.7 mmol/l x min) (P < 0.05) and there was a strong trend towards the same direction in the TRL-TAG responses. In all instances, plasma-and TRL-TAG showed a biphasic response with increased concentrations occurring at 1h and between 3 and 7h postprandially. TRL-cholesterol, T-C, and serum apo A-I and B responses to the three meals were similar. CONCLUSIONS: The findings support the view that fish oils decrease postprandial lipaemia and this may be an important aspect of their beneficial effects in reducing risk of coronary heart disease (CHD). Further work is required to determine the mechanisms responsible for this effect.
Resumo:
Plasma high density lipoprotein (HDL), which protects against atherosclerosis, is thought to remove cholesterol from peripheral tissues and to deliver cholesteryl esters via a selective uptake pathway to the liver (reverse cholesterol transport) and steroidogenic tissues (e.g., adrenal gland for storage and hormone synthesis). Despite its physiologic and pathophysiologic importance, the cellular metabolism of HDL has not been well defined. The class B, type I scavenger receptor (SR-BI) has been proposed to play an important role in HDL metabolism because (i) it is a cell surface HDL receptor which mediates selective cholesterol uptake in cultured cells, (ii) its physiologically regulated expression is most abundant in the liver and steroidogenic tissues, and (iii) hepatic overexpression dramatically lowers plasma HDL. To test directly the normal role of SR-BI in HDL metabolism, we generated mice with a targeted null mutation in the SR-BI gene. In heterozygous and homozygous mutants relative to wild-type controls, plasma cholesterol concentrations were increased by ≈31% and 125%, respectively, because of the formation of large, apolipoprotein A-I (apoA-I)-containing particles, and adrenal gland cholesterol content decreased by 42% and 72%, respectively. The plasma concentration of apoA-I, the major protein in HDL, was unchanged in the mutants. This, in conjunction with the increased lipoprotein size, suggests that the increased plasma cholesterol in the mutants was due to decreased selective cholesterol uptake. These results provide strong support for the proposal that in mice the gene encoding SR-BI plays a key role in determining the levels of plasma lipoprotein cholesterol (primarily HDL) and the accumulation of cholesterol stores in the adrenal gland. If it has a similar role in controlling plasma HDL in humans, SR-BI may influence the development and progression of atherosclerosis and may be an attractive candidate for therapeutic intervention in this disease.
Resumo:
OBJECTIVE: Low HDL cholesterol (HDL-C) and small HDL particle size may directly promote hyperglycemia. We evaluated associations of HDL-C, apolipoprotein A-I (apoA-I), and HDL-C/apoA-I with insulin secretion, insulin resistance, HbA1c, and long-term glycemic deterioration, reflected by initiation of pharmacologic glucose control.
RESEARCH DESIGN AND METHODS: The 5-year Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study followed 9,795 type 2 diabetic subjects. We calculated baseline associations of fasting HDL-C, apoA-I, and HDL-C/apoA-I with HbA1c and, in those not taking exogenous insulin (n = 8,271), with estimated β-cell function (homeostasis model assessment of β-cell function [HOMA-B]) and insulin resistance (HOMA-IR). Among the 2,608 subjects prescribed lifestyle only, Cox proportional hazards analysis evaluated associations of HDL-C, apoA-I, and HDL-C/apoA-I with subsequent initiation of oral hypoglycemic agents (OHAs) or insulin.
RESULTS: Adjusted for age and sex, baseline HDL-C, apoA-I, and HDL-C/apoA-I were inversely associated with HOMA-IR (r = -0.233, -0.134, and -0.230; all P < 0.001; n = 8,271) but not related to HbA1c (all P > 0.05; n = 9,795). ApoA-I was also inversely associated with HOMA-B (r = -0.063; P = 0.002; n = 8,271) adjusted for age, sex, and HOMA-IR. Prospectively, lower baseline HDL-C and HDL-C/apoA-I levels predicted greater uptake (per 1-SD lower: hazard ratio [HR] 1.13 [CI 1.07-1.19], P < 0.001; and HR 1.16 [CI 1.10-1.23], P < 0.001, respectively) and earlier uptake (median 12.9 and 24.0 months, respectively, for quartile 1 vs. quartile 4; both P < 0.01) of OHAs and insulin, with no difference in HbA1c thresholds for initiation (P = 0.87 and P = 0.81). Controlling for HOMA-IR and triglycerides lessened both associations, but HDL-C/apoA-I remained significant.
CONCLUSIONS: HDL-C, apoA-I, and HDL-C/apoA-I were associated with concurrent insulin resistance but not HbA1c. However, lower HDL-C and HDL-C/apoA-I predicted greater and earlier need for pharmacologic glucose control.
Resumo:
BACKGROUND - High-density lipoprotein (HDL) protects against arterial atherothrombosis, but it is unknown whether it protects against recurrent venous thromboembolism. METHODS AND RESULTS - We studied 772 patients after a first spontaneous venous thromboembolism (average follow-up 48 months) and recorded the end point of symptomatic recurrent venous thromboembolism, which developed in 100 of the 772 patients. The relationship between plasma lipoprotein parameters and recurrence was evaluated. Plasma apolipoproteins AI and B were measured by immunoassays for all subjects. Compared with those without recurrence, patients with recurrence had lower mean (±SD) levels of apolipoprotein AI (1.12±0.22 versus 1.23±0.27 mg/mL, P<0.001) but similar apolipoprotein B levels. The relative risk of recurrence was 0.87 (95% CI, 0.80 to 0.94) for each increase of 0.1 mg/mL in plasma apolipoprotein AI. Compared with patients with apolipoprotein AI levels in the lowest tertile (<1.07 mg/mL), the relative risk of recurrence was 0.46 (95% CI, 0.27 to 0.77) for the highest-tertile patients (apolipoprotein AI >1.30 mg/mL) and 0.78 (95% CI, 0.50 to 1.22) for midtertile patients (apolipoprotein AI of 1.07 to 1.30 mg/mL). Using nuclear magnetic resonance, we determined the levels of 10 major lipoprotein subclasses and HDL cholesterol for 71 patients with recurrence and 142 matched patients without recurrence. We found a strong trend for association between recurrence and low levels of HDL particles and HDL cholesterol. CONCLUSIONS - Patients with high levels of apolipoprotein AI and HDL have a decreased risk of recurrent venous thromboembolism. © 2007 American Heart Association, Inc.
Resumo:
One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.
Resumo:
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
Resumo:
This thesis has been focused on the proteomic characterization of human saliva from donors of different ages, starting from birth up to adult age, and pediatric brain tumor tissues. The first study has been performed in order to compare the acid-insoluble fraction of saliva from preterm with at-term newborns and adults and establish if differences exist. In the second study medulloblastoma and pilocytic astrocytoma pediatric brain tumor extracts have been compared. In both studies 2- DE analysis was coupled with high resolution tandem mass spectrometry (MS/MS). The proteomic characterization of the acid-insoluble fractions of saliva from preterm newborns allowed to integrate data previously obtained on the acid-soluble fraction by HPLC-electrospray ionization (ESI)-mass spectrometry (MS), and to evidence several differences between preterm newborns, at-term newborns and adults. Spots differentially expressed between the three groups, according to image analysis of the gels, were submitted to in-gel tryptic digestion and the peptide mixture analyzed by high performance HPLC-ESI-MS/MS for their characterization. By this strategy, we identified three over-expressed proteins in atterm newborns with respect to preterm newborns and adults (BPI fold-containing family A member 1, two proteoforms of annexin A1, and keratin type 1 cytoskeletal 13), and several over-expressed proteins in adults (fatty acid-binding protein, S100A6, S100A7, two proteoforms of S100A9, several proteoforms of prolactin-inducible protein, Ig kappa chain, two proteoforms of cystatin SN, one proteoform of cystatin S and several proteoforms of α-amylase 1). Moreover, for the first time, it was possible to assign by MS/MS four spots of human saliva 2-DE, already detected by other authors, to different proteoforms of S100A9. The strategy applied used a sequential staining protocol to the 2-DE gels, first with Pro-Q Diamond, that allows specific detection of phosphoproteins, and successively with total protein SYPRO Ruby stain. In the second study, proteomic analysis of two pediatric brain tumor tissues pointed out differences between medulloblastoma, the prevalent malignant tumor in childhood, and pilocytic astrocytoma, the most common, that only rarely shows a malignant progression. Due to the limited availability of bioptic tissue, the study was performed on pooled tumor tissues, and was focused on acid-insoluble fraction to integrate the characterization performed by a group of colleagues in Rome on the acid-soluble fraction by high performance HPLC-ESI-MS/MS. The results indicated that the two tumors exhibit different proteomic profiles and evidenced interesting differential expression of several proteins. Among them, peroxiredoxin- 1, peptidyl-prolyl cis–trans isomerase A, heterogeneous nuclear ribonucleoproteins A2/B1, mitochondrial isoform of malate dehydrogenase, nucleoside diphosphate kinase A, glutathione S-transferase P and fructose bisphosphate aldolase A resulted significantly over-expressed in medulloblastoma while glial fibrillary acidic protein, serotransferrin, α crystallin B chain, ferritin light chain, annexin A5, fatty acid-binding protein (brain), sorcin and apolipoprotein A-I resulted significantly over-expressed in pilocytic astrocytoma. In conclusion, the work done allowed to evidence the usefulness of using an integrated bottom-up/top-down approach, based on 2-DE-MS analysis and high performance MS in order to obtain a complete characterization of the proteome under investigation, revealing and identifying, not only peptides and small proteins, but also proteins with higher MW, that often it is not possible to identify by using exclusively a top-down ESI-MS approach.
Resumo:
Two novel mutations were identified in a compound heterozygous male with lecithin:cholesterol acyltransferase (LCAT) deficiency. Exon sequence determination of the LCAT gene of the proband revealed two novel heterozygous mutations in exons one (C110T) and six (C991T) that predict non-conservative amino acid substitutions (Thr13Met and Pro307Ser, respectively). To assess the distinct functional impact of the separate mutant alleles, studies were conducted in the proband's 3-generation pedigree. The compound heterozygous proband had negligible HDL and severely reduced apolipoprotein A-I, LCAT mass, LCAT activity, and cholesterol esterification rate (CER). The proband's mother and two sisters were heterozygous for the Pro307Ser mutation and had low HDL, markedly reduced LCAT activity and CER, and the propensity for significant reductions in LCAT protein mass. The proband's father and two daughters were heterozygous for the Thr13Met mutation and also displayed low HDL, reduced LCAT activity and CER, and more modest decrements in LCAT mass. Mean LCAT specific activity was severely impaired in the compound heterozygous proband and was reduced by 50% in individuals heterozygous for either mutation, compared to wild type family members. It is also shown that the two mutations impair both catalytic activity and expression of the circulating protein.