18 resultados para Aphidicolin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the end of its tether! The fusion of a six-membered ring onto the four-carbon-atom tether of substrate 1 provides an efficient approach toward the polycyclic ring systems of the natural products aphidicolin and stemodinone. The reaction represents a unique example of a preference for product formation from an endo exciplex in an intramolecular system (exo:endo 2:3=1.0:1.2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the effect of apoptosis on gene amplification, we have constructed HeLa S3 cell lines in which the expression of bcl-2 (BCL2) can be controlled by tetracycline in the growth medium. Induction of Bcl-2 expression caused a temporary delay of apoptosis and resulted in roughly a 3-fold increase in the frequency of resistant colonies when cells were selected with trimetrexate. This resistance was due to amplification of the dihydrofolate reductase gene. Cells grown out of the pooled resistant colonies retained the same level of resistance to trimetrexate whether Bcl-2 was induced or repressed, consistent with the theory that Bcl-2 functions by facilitating gene amplification, rather than being the resistance mechanism per se. Pretreating cells with aphidicolin is another method to increase gene amplification frequency. When Bcl-2-expressing cells were pretreated with aphidicolin, the resulting increase in gene amplification frequency was approximately the product of the increases caused by aphidicolin pretreatment or Bcl-2 expression alone, indicating that Bcl-2 increases gene amplification through a mechanism independent of that of aphidicolin pretreatment. These results are consistent with the concept that gene amplification occurs at a higher frequency during drug-induced cell cycle perturbation. Bcl-2 evidently increases the number of selected amplified colonies by prolonging cell survival during the perturbation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smallanthus sonchifolius is a traditional Andean plant which has been cultured mainly in Brazil, Japan and New Zealand due to its medicinal properties. A study of the endophytic fungi associated to the plant was carried out in order to characterize new cytotoxic agents. Thirty two fungal strains were isolated and submitted to cultivation and extraction producing 186 extracts. Of these, 12% displayed moderate to high cytotoxic activities and were considered promising anticancer compound sources. The ethyl acetate fractions of Nigrospora sphaerica and Phoma betae liquid fermentations contained the synergistic compounds 8-hydroxy-6-methoxy-3-methylisocoumarin and (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one which are potential compounds for drug discovery. Another isolated compound, pimara-7,15-dien-3-beta-ol diterpene is being characterized for the first time through a detailed spectroscopic analysis including GC/MS, homo- and hetero-nuclear correlated NMR experiments (HMQC, HMBC, COSY and NOEdiff) along with its optical rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been proposed that common aphidicolin-inducible fragile sites, in general, predispose to specific chromosomal breakage associated with deletion, amplification, and/or translocation in certain forms of cancer. Although this appears to be the case for the fragile site FRA3B and may be the case for FRA7G, it is not Set clear whether this association is a general property of this class of fragile site. The major aim of the present study was to determine whether the FRA16D chromosomal fragile site locus has a role to play in predisposing DNA sequences within and adjacent to the fragile site to DNA instability (such as deletion or translocation), which could lead to or be associated with neoplasia. We report the localization of FRA16D within a contig of cloned DNA and demonstrate that this fragile site coincides with a region of homozygous deletion in a gastric adenocarcinoma cell line and is bracketed by translocation breakpoints in multiple myeloma, as reported previously (Chesi, M., et al., Blood, 91: 4457-4463, 1998), Therefore, given similar findings at the FRA3B and FRA7G fragile sites, it is likely that common aphidicolin-inducible fragile sites exhibit the general property of localized DNA instability in cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies have demonstrated that although the structure of the adult and larval zebrafish caudal fin is different, there are similarities at the cellular and molecular level that turn larval zebrafish fin fold a useful model to study the basic principles of regeneration. In this process, while the essential role for Hedgehog (Hh) signaling is well established in the adult zebrafish caudal fin system, its involvement in juvenile tissue regeneration is still unknown. The aim of this Master thesis was therefore to evaluate the contribution of the Hh signaling pathway to the larval zebrafish fin fold regeneration process. Accordingly, we analyzed the expression of several Hh signaling components through in situ hybridization. Here, we showed that several of these genes are effectively expressed in the larval regenerating fin tissue, suggesting a role for Hh signaling also during larval regeneration. However, divergence in the regulation of few Hh signaling components appears to exist between the adult and larval zebrafish fin regeneration processes. Nevertheless, similarly to adult caudal fin regeneration, when Hh signaling was blocked, by using cyclopamine, the larval fin fold regenerative outgrowth is severely impaired. Since larval zebrafish fin fold is ciliated, and primary cilia are closely related to Hh signaling regulation in vertebrate systems, we further addressed the role of primary cilia during larval fin fold regeneration process. To this end, we used the zebrafish iguana mutant, in which primary cilia are not formed, to study the modulation of Hh signaling expression during larval fin fold regeneration in the absence of primary cilia. Here, we found that several genes were expressed with a delay, coincident with the delay in the mutant fin fold regeneration observed in previous work. We show that Hh signaling in the fin fold is crucial to promote cell proliferation. When Hh signaling is blocked using cyclopamine there is a strong blockage of cell proliferation and regeneration is also blocked. Surprisingly, in iguana mutants where Hh signaling is impaired but not totally blocked, cell proliferation is not detected but regeneration still occurs. This raises the question about the requirement of cell proliferation in larvae fin fold regeneration. By blocking the cell cycle using aphidicolin we demonstrate that cell proliferation is not necessary for zebrafish larvae fin fold regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the developing mouse embryo, the diploid trophectoderm is known to undergo a diploid to giant cell transformation. These cells arise by a process of endoreduplication, characterized by replication of the entire genome without subsequent mitosis or cell division, leading to polyploidy and the formation of giant nuclei. Studies of 13.5 day rat trophoblast derived from the parietal yolk sac have indicated a relatively low rate of DNA polymerase a activity, the noinnal eukaryotic replicase, in comparison to that of DNA polymerase g. These results have suggested that endoreduplication in trophoblast giant cells may not employ the normal replicase enzyme, DNA polymerase a. In order to determine whether a 'switch' from DNA polymerase to DNA polymerase is a necessary concomitant of the diploid to giant cell transformation, two distinct populations of trophoblast giant cells, the primary giant cell derived from the mural trophectoderm and the secondary giant cell derived from the polar trophoectoderm were used. These two populations of trophoblast giant cells can be obtained from the tissue outgrowths of 3.5da blastocysts and the extraembryonic ectoderm (EX) and ectoplacental cone (EPC) of 7.5 day embryos respectively. Tissue outgrowths were treated with aphidicolin, a specific reversible inhibitor of eukaryotic DNA polymerase a, on various days after explantation. The effect of aphidicolin treatment was assessed both qualitatively, using autoradiography and quantitatively by scintillation counting and Feulgen staining. 3 DNA synthesis was measured in control and treated cultures after a Hthymidine pulse. Scintillation counts of the embryo proper revealed that DNA synthesis was consistently inhibited by greater than 907. in the presence of aphidicolin. Inhibition of DNA synthesis in the EX and EPC varied between 81-957. and 82-987. respectively, indicating that most DNA synthesis was mediated by DNA polymerase a, but that a small but significant amount of residual synthesis was indicated. A qualitative approach was then applied to determine whether the apparent residual DNA synthesis was restricted to a subpopulation of giant cells or whether all giant cells displayed a low level of DNA synthesis. Autoradiographs of the ICM of blastocysts and the embryo proper of 7.5da embryos, which acted as diploid control population, was completely inhibited regardless of duration in explant culture. In contrast, primary trophoblast giant cells derived from blastocysts and secondary giant cells derived from the EX and EPC were observed to possess some heavily labelled cells after aphidicolin treatment. These results suggest that although DNA polymerase a is the primary replicating enzyme responsible for endoreduplication in mouse trophoblast giant cells, some nonactivity is also observed. A DNA polymerase assay employing tissue lysates of outgrown 7.5da embryo, EX and EPC tissues was used to attempt to confirm the presence of higher nonactivity in tissues possessing trophoblast giant cells. Employing a series of inhibitors of DNA polymerases, it would appear that DNA polymerase a is the major polymerase active in all tissues of the 7.5da mouse embryo. The nature of the putative residual DNA synthetic activity could not be unequivically determined in this study. Therefore, these results suggest that both primary and secondary trophoblast giant cells possess and use DNA polymerase a in endoreduplicative DNA synthesis. It would appear that the high levels of DNA polymerase g activity reported in trophoblast tissue derived from the 13.5 da rat yolk sac was not a general feature of all endoreduplication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3 vidéos sont dans des fichiers complémentaires à ce mémoire

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the karyotypes of the bat species Molossus ater and M molossus, spontaneous and bromodeoxyuridine (BrdU)- or aphidicolin (APC)-sensitive fragile sites were located. Four chromosome regions harbored APC-sensitive fragile sites: 1q9 and 8q4 in both M ater and M molossus, 3q3 in M ater, and 1p7 in M molossus. The fragile sites in 1q9 and 8q4 were also observed without induction in M molossus. BrdU-sensitive fragile sites were not detected. Despite observations in several other species, the fragile sites detected in Molossus are not coincident with the breakpoints involved in the chromosome rearrangements occurring in the evolution of 7 species of the Molossidae family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die am häufigsten auftretende altersassoziierte neurodegenerative Krankheit ist die Alzheimer Demenz. Ein mit entscheidender Schritt bei der Entstehung der Alzheimer Erkrankung ist wahrscheinlich die Produktion des Aβ-Peptids durch proteolytische Spaltung das Amyloid-Vorläuferproteins APP. In der vorliegenden Arbeit wurde die altersabhängige Prozessierung des Amyloid-Vorläuferproteins (APP) in Fibroblasten von Hautbiopsien von Familiärer Alzheimer-, Trisomie21 und Niemann-Pick Typ C-Krankheit untersucht. Die in dieser Arbeit verwendeten Fibroblasten wurden bis zum Erreichen des zellulären Wachstumsstopps (replikative Seneszenz) seriell passagiert und die Untersuchungen erfolgten an Zellen aufsteigender PDL. Dabei zeigte sich, dass, unabhängig von dem durch die Krankheit vorliegenden genetischen biochemischen Hintergrund, die APP-Prozessierung im Laufe der Zellalterung progressiv verringert wird. Die altersabhängig ansteigenden Cholesterinspiegel führten zu einer Reduktion der APP-Reifung und infolge dessen nahmen sowohl die intrazellulären APP-Spaltfragmente (C99, C83 und AICD) als auch die extrazellulären APP-Fragmente (sAPPα, sAPP) ab. Ebenso konnte gezeigt werden, dass die γ-Sekretase-Aktivität abnimmt. Dies war verbunden mit einem Rückgang der Proteinspiegel von Nicastrin und Presenilin, beides Komponenten des γ-Sekretase-Komplexes. Obwohl die Proteinexpression der α-Sekretase ADAM10 altersassoziiert konstant blieb, nahm die α-Sekretase-Aktivität mit steigendem Lebensalter ab. Erste Untersuchungen zeigten, dass die NAD+-abhängige Histon-Deacetylase SIRT1 eine wichtige Rolle im Bezug auf die α-Sekretase-Aktivität spielen könnte. Im Gegensatz zu den Abnahmen der α- und γ-Sekretase-Aktivitäten konnte eine erhöhte Aktivität der β-Sekretase in seneszenten Zellen beobachtet werden. Die mRNA-Menge und Proteinspiegel der ß-Sekretase BACE1 blieben dabei unverändert. Des Weiteren zeigte sich eine Zunahme der β-Sekretase-Aktivität bei Behandlung von jungen Zellen mit konditioniertem Medium seneszenter Zellen. Da sensezente Zellen einem Proliferationsstopp in der G1-Phase unterliegen, wurde der Einfluss des Zellzyklus-Inhibitors Aphidicolin auf die β-Sekretase untersucht. Hier wurde sowohl in IMR90 Fibroblasten als auch in Neuroblastoma-Zellen N2a eine Zunahme der β-Sekretase-Aktivität nach Zugabe der Inhibitoren beobachtet. Auch kommt es im Zuge der Alterung zu einer verstärkten Expression inflammatorischer Zytokine, die mit der Entstehung von Aβ-Peptiden in Verbindung gebracht werden. Deshalb wurde der Einfluss von Zytokinen auf die β-Sekretase-Aktivität untersucht. Die Zugabe von Interferon-γ und Interleukin 6 führte bei jungen IMR90-Zellen zu einem Anstieg der β-Sekretase-Aktivität, während bei alten Zellen keine Änderung zu verzeichnen war.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibition of DNA repair by the nucleoside of fludarabine (F-ara-A) induces toxicity in quiescent human cells. The sensing and signaling mechanisms following DNA repair inhibition by F-ara-A are unknown. The central hypothesis of this project was that the mechanistic interaction of a DNA repair initiating agent and a nucleoside analog initiates an apoptotic signal in quiescent cells. The purpose of this research was to identify the sensing and signaling mechanism(s) that respond to DNA repair inhibition by F-ara-A. Lymphocytes were treated with F-ara-A, to accumulate the active triphosphate metabolite and subsequently DNA repair was activated by UV irradiation. Pre-incubation of lymphocytes with 3 μM F-ara-A inhibited DNA repair initiated by 2 J/m2 UV and induced greater than additive apoptosis after 24 h. Blocking the incorporation of F-ara-A nucleotide into repairing DNA using 30 μM aphidicolin considerably lowered the apoptotic response. ^ Wild-type quiescent cells showed a significant loss in viability than did cells lacking functional sensor kinase DNA-PKcs or p53 as measured by colony formation assays. The functional status of ATM did not appear to affect the apoptotic outcome. Immunoprecipitation studies showed an interaction between the catalytic sub-unit of DNA-PK and p53 following DNA repair inhibition. Confocal fluorescence microscopy studies have indicated the localization pattern of p53, DNA-PK and γ-H2AX in the nucleus following DNA damage. Foci formation by γ-H2AX was seen as an early event that is followed by interaction with DNA-PKcs. p53 serine-15 phosphorylation and accumulation were detected 2 h after treatment. Fas/Fas ligand expression increased significantly after repair inhibition and was dependent on the functional status of p53. Blocking the interaction between Fas and Fas ligand by neutralizing antibodies significantly rescued the apoptotic fraction of cells. ^ Collectively, these results suggest that incorporation of the nucleoside analog into repair patches is critical for cytotoxicity and that the DNA damage, while being sensed by DNA-PK, may induce apoptosis by a p53-mediated signaling mechanism. Based on the results, a model is proposed for the sensing of F-ara-A-induced DNA damage that includes γ-H2AX, DNA-PKcs, and p53. Targeting the cellular DNA repair mechanism can be a potential means of producing cytotoxicity in a quiescent population of neoplastic cells. These results also provide mechanistic support for the success of nucleoside analogs with cyclophosphamide or other agents that initiate excision repair processes, in the clinic. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present dataset contains the source data for Figure 2B of Tentner et al. (2012). The data shows the percentage of cultured cell-populations that stained positively and/or negatively for apoptotic markers cleaved caspase-3 and cleaved PARP, following DNA damage treatments induced by various doses of doxorubicin (0, 2 and 10 µmole/L) in the presence (100 ng/mL) or absence (0 ng/mL) of TNF-alpha co-treatment. For the six treatment conditions investigated, cell counts were made by flow cytometry at times 6, 12, 24, and 48 h following treatment; CULTURE DETAILS: U2OS cells were obtained from ATCC were maintained at 21% oxygen and 5% CO2 in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, penicillin, streptomycin, 2mM L-glutamine, and used within 15-20 passages. The first thymidine block was released by washing the plates three times with PBS, and incubating them in fresh thymidine-free media for 12 h. A second thymidine block was then performed by re-addition of thymidine to 2.5 mM followed by incubation for an additional 18 h. Media was aspirated, plates were washed 3 with PBS, and replaced with fresh media in the presence or absence of 10 mM aphidicolin; ANALYSIS DETAILS: See supplementary journal publication; RESULT: The authors of the supplementary journal publication conclude that TNF enhances dose-dependent cell death following doxorubicin-induced DNA damage with minimal affect on dose-dependent cell-cycle arrest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the ciliate Euplotes to study the role of DNA polymerase in telomeric C strand synthesis. Euplotes provides a unique opportunity to study C strand synthesis without the complication of simultaneous DNA replication because millions of new telomeres are made at a stage in the life cycle when no general DNA replication takes place. Previously we showed that the C-strands of newly synthesized telomeres have a precisely controlled length while the G-strands are more heterogeneous. This finding suggested that, although synthesis of the G-strand (by telomerase) is the first step in telomere addition, a major regulatory step occurs during subsequent C strand synthesis. We have now examined whether G- and C strand synthesis might be regulated coordinately rather than by two independent mechanisms. We accomplished this by determining what happens to G- and C strand length if C strand synthesis is partially inhibited by aphidicolin. Aphidicolin treatment caused a general lengthening of the G-strands and a large increase in C strand heterogeneity. This concomitant change in both the G- and C strand length indicates that synthesis of the two strands is coordinated. Since aphidicolin is a very specific inhibitor of DNA polα and polδ, our results suggest that this coordinate length regulation is mediated by DNA polymerase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested that delayed DNA replication underlies fragility at common human fragile sites, but specific sequences responsible for expression of these inducible fragile sites have not been identified. One approach to identify such cis-acting sequences within the large nonexonic regions of fragile sites would be to identify conserved functional elements within orthologous fragile sites by interspecies sequence comparison. This study describes a comparison of orthologous fragile regions, the human FRA3B/FHIT and the murine Fra14A2/Fhit locus. We sequenced over 600 kbp of the mouse Fra14A2, covering the region orthologous to the fragile epicenter of FRA3B, and determined the Fhit deletion break points in a mouse kidney cancer cell line (RENCA). The murine Fra14A2 locus, like the human FRA3B, was characterized by a high AT content. Alignment of the two sequences showed that this fragile region was stable in evolution despite its susceptibility to mitotic recombination on inhibition of DNA replication. There were also several unusual highly conserved regions (HCRs). The positions of predicted matrix attachment regions (MARs), possibly related to replication origins, were not conserved. Of known fragile region landmarks, five cancer cell break points, one viral integration site, and one aphidicolin break cluster were located within or near HCRs. Thus, comparison of orthologous fragile regions has identified highly conserved sequences with possible functional roles in maintenance of fragility.