905 resultados para Anxiolytic Agents
Resumo:
Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders
Resumo:
PURPOSE: To investigate the sedative and clinical effects of the pharmacopuncture with xylazine, compared to the conventional dose of a intramuscular injection in dogs.METHODS: Twelve dogs were randomly distributed in two groups of six animals and treated as follows: control group (X-IM): 1mg kg(-1) of xylazine given intramuscularly (IM); pharmacopuncture group (X-Yintang): 0.1mg kg(-1) of xylazine diluted to 0.5 mL of saline injected into the Yin Tang acupoint. Heart rate, cardiac rhythm (ECG), systolic arterial blood pressure (SABP), respiratory rate (RR), rectal temperature (RT), blood glucose concentration, degree of sedation and adverse effects were evaluated.RESULTS: Sedative effect was observed in both groups. The degree of sedation was greater in X-IM only at 15 min when compared with X-Yintang group. Cardiovascular established was observed in X-Yintang group, while marked reduction in the HR and increased incidence of ECG abnormalities were detected in X-IM. In both treatment groups, minimal changes were observed in relation to SABP, RR, RT and blood glucose. High incidence (66%) of vomiting was observed in X-IM, while this adverse effect was absent in X-Yintang.CONCLUSION: Pharmacopuncture with xylazine induced clinically relevant sedative effects in dogs, with the advantage of reduction of undesirable side effects associated with alpha(2)-agonists, including bradycardia, cardiac arrhythmias, and emesis.
Resumo:
Background: The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment.Methods: The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test.Results: The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO.Conclusion: This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity. © 2013 Costa et al; licensee BioMed Central Ltd.
Resumo:
The results of an investigation into how stressors interact with the action of serotonergic agents in animal models of anxiety are presented. Water deprivation and restraint both increased plasma corticosterone concentrations and elevated 5-HT turnover. In the elevated X-maze, water deprivation had a duration-dependent "anxiolytic" effect. The effect of restraint was dependent on the duration of restraint and was to inhibit maze exploration. Water-deprivation did not influence the action of diazepam or any 5-HT1A ligand in the X-maze. Restraint switched the "anxiogenic" effect of 8-0H-DPAT to either "anxiolytic" or inactive, depending on the time after the restraint when testing was performed. The Vogel conflict test detected an "anxiolytic" "anxiolytic"V"anxiolytic""anxiolytic" effect of buspirone which was additive with "anxiolytic" effects of pindolol and propranolol. Diazepam and fluoxetine were also active, but 8-0H-DPAT, ipsapirone, gepirone and yohimbine were inactive. In the elevated X-maze, "anxiogenic" responses to picrotoxin, flumazenil, RU 24969, CGS 12066B, fluoxetine and 8-0H-DPAT were detected. Other 5-HT1A ligands were inactive. Diazepam and corticosterone had "anxiolytic" effects. Increasing light intensity did not change behaviour on the elevated X-maze, but was able to reverse the effect of 8- OH-DPAT to an "anxiolytic" action. This effect was attributed to a presynaptic mechanism, because it was abolished by pCPA. The occurence of different behaviours in different reglons of the maze was shown to be susceptible to modulation by "anxiolytic" and "anxiogenic" drugs. These results are discussed in the context of there being at least two separate 5-HT mechanisms which are involved in the control of anxiety.