589 resultados para Antisense Oligodeoxynucleotides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Androgen withdrawal is the only effective form of systemic therapy for men with advanced disease, producing symptomatic and/or objective response in 80% of patients. Unfortunately, androgen independent (AI) progression and death occurs within a few years in the majority of these cases (6). Prostate cancer is highly chemoresistant, with objective response rates of 10% and no demonstrated survival benefit (28). Hormone refractory prostate cancer (HRPC) is therefore the main obstacle to improving the survival and quality of life in patients with advanced disease, and novel therapeutic strategies that target the molecular basis of androgen and chemoresistance are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'hypertension artérielle est l'une des principales causes de morbidité et de mortalité dans le monde. La compréhension des mécanismes qui sont à la base du développement de l'hypertension offrira de nouvelles perspectives pour un meilleur contrôle de l'hypertension. Nous avons précédemment montré que le niveau des protéines Giα-2 et Giα-3 est augmenté chez les rats spontanément hypertendus (SHR) avant l'apparition de l'hypertension. Le traitement avec les inhibiteurs de l’enzyme de conversion de l’Angiotensine (IEC) est associé à une diminution de l’expression des protéines Gi. De plus, l'injection intrapertoneale de la toxine de la coqueluche inactive les deux protéines Giα et empêche le développement de l'hypertension chez les SHR. Cependant, la contribution spécifique des protéines Giα-2 et Giα-3 dans le développement de l'hypertension n'est pas encore connue. Dans la présente étude, l’Anti-sens oligodésoxynucléotide (AS-ODN) de Giα-2 et Giα-3 (1mg/Kg en poids corporel) encapsulé dans des liposomes cationiques PEG / DOTAP/ DOPE ont été administrés par voie intraveineuse aux SHR pré-hypertendus âgé de trois semaines et aux Wistar Kyoto (WKY) rats de même âge. Les contrôles des WKY et SHR non traités ont été injectés avec du PBS stérile, liposomes vides ou oligomères sens. La pression artérielle (PA) a été suivie chaque semaine en utilisant la technique manchon caudal. Les rats ont été sacrifiés à l'âge de six semaines et neuf semaines. Le coeur et l'aorte ont été utilisés pour étudier l'expression des protéines Gi. Le knockdown des protéines Giα-2 par l’injection de Giα-2-AS a empêché le développement de l'hypertension à l'âge de six semaines. Par la suite, la PA a commencé à augmenter rapidement et a atteint le niveau que l'on retrouve dans les groupes témoins à l'âge de neuf semaines. D'autre part, la PA du groupe traité avec le Giα-3-AS a commencé à augmenter à l'âge de quatre semaines. Dans le groupe des SHR-Giα-3-AS, la PA a augmenté à l’âgé de six semaines, mais moins que celle de SHR-CTL. Le coeur et l'aorte obtenues des SHR Giα-2-AS et Giα-3-AS à partir de l’âgé de six semaines ont eu une diminution significative de l’expression des protéines Giα-2 et Giα-3 respectivement. Dans le groupe des WKY Giα-2-AS et Giα-3-AS l'expression des protéines Giα-2 et Giα-3 respectivement a diminué malgré l'absence de changement dans la PA par rapport aux WKY CTL. À l'âge de neuf semaines, les SHR traités avec du Giα-2-AS et Giα-3-AS avaient la même PA et expression des protéines Gi que le SHR CTL. Ces résultats suggèrent que les deux protéines Giα-2 et Giα-3 sont impliqués dans le développement de l'hypertension chez les SHR, mais le knockdown de Giα-2 et pas de Giα-3 a empêché le développement de l'hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytosine arabinonucleoside (AraC) is a pyrimidine antimetabolite that kills proliferating cells by inhibiting DNA synthesis and, importantly, is also an inducer of apoptosis. We recently reported that age-induced apoptotic cell death of cultured cerebellar neurons is directly associated with an over-expression of a particulate 38-kDa protein, identified by us as glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). We now show that the AraC-induced neuronal death of immature cerebellar granule cells in culture is effectively delayed by actinomycin-D, cycloheximide, or aurintricarboxylic acid (a DNase inhibitor). Furthermore, two GAPDH antisense, but not their corresponding sense, oligodeoxyribonucleotides markedly arrested AraC-induced apoptosis. This protection was more effective than that induced by the above-mentioned classical inhibitors of apoptosis. Prior to AraC-induced neuronal death, GAPDH mRNA levels increased by approximately 2.5-fold, and this mRNA accumulation was blocked by actinomycin-D and the GAPDH antisense (but not sense) oligonucleotide. Like actinomycin-D, a GAPDH antisense oligonucleotide also suppressed the AraC-induced over-expression of the 38-kDa particulate protein (i.e., GAPDH), while the corresponding sense oligonucleotide was totally ineffective. Thus, the present results show that GAPDH over-expression is involved in AraC-induced apoptosis of cultured cerebellar granule cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of antisense technology has focused in part on creating improved methods for delivering oligodeoxynucleotides (ODNs) to cells. In this report, we describe a cationic lipid that, when formulated with the fusogenic lipid dioleoylphosphatidyliethanolamine, greatly improves the cellular uptake properties of antisense ODNs, as well as plasmid DNA. This lipid formulation, termed GS 2888 cytofectin, (i) efficiently transfects ODNs and plasmids into many cell types in the presence or absence of 10% serum in the medium, (ii) uses a 4- to 10-fold lower concentration of the agent as compared to the commercially available Lipofectin liposome, and (iii) is > or = 20-fold more effective at eliciting antisense effects in the presence of serum when compared to Lipofectin. Here we show antisense effects using GS 2888 cytofectin together with C-5 propynyl pyrimidine phosphorothioate ODNs in which we achieve inhibition of gene expression using low nanomolar concentrations of ODN. This agent expands the utility of antisense ODNs for their use in understanding gene function and offers the potential for its use in DNA delivery applications in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied inhibition of growth of the malaria parasite Plasmodium falciparum in in vitro culture using antisense (AS) oligodeoxynucleotides (ODNs) against different target genes. W2 and W2mef strains of drug-resistant parasites were exposed to AS ODNs over 48 hr, and growth was determined by microscopic examination and [3H]hypoxanthine incorporation. At ODN concentrations of 1 microM, phosphorothioate (PS) ODNs inhibited growth in a target-independent manner. However, between 0.5 and 0.005 microM, ODNs against dihydrofolate reductase, dihydropteroate synthetase, ribonucleotide reductase, the schizont multigene family, and erythrocyte binding antigen EBA175 significantly inhibited growth compared with a PS AS ODN against human immunodeficiency virus, two AS ODNs containing eight mismatches, or the sense strand controls (P < 0.0001). The IC50 was approximately 0.05 microM, whereas that for non-sequence-specific controls was 15-fold higher. PS AS ODNs against DNA polymerase alpha showed less activity than that for other targets, whereas a single AS ODN against triose-phosphate isomerase did not differ significantly from controls. We conclude that at concentrations below 0.5 microM, PS AS ODNs targeted against several malarial genes significantly inhibit growth of drug-resistant parasites in a nucleotide sequence-dependent manner. This technology represents an alternative method for identifying malarial genes as potential drug targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of the human promyelocytic leukemia cell line HL-60 with antisense oligodeoxynucleotides to UDP-N-acetylgalactosamine:beta-1,4-N-acetylgalactosaminyl-transferase (GM2-synthase; EC 2.4.1.92) and CMP-sialic acid:alpha-2,8-sialyltransferase (GD3-synthase; EC 2.4.99.8) sequences effectively down-regulated the synthesis of more complex gangliosides in the ganglioside synthetic pathways after GM3, resulting in a remarkable increase in endogenous GM3 with concomitant decreases in more complex gangliosides. The treated cells underwent monocytic differentiation as judged by morphological changes, adherent ability, and nitroblue tetrazolium staining. These data provide evidence that the increased endogenous ganglioside GM3 may play an important role in regulating cellular differentiation and that the antisense DNA technique proves to be a powerful tool in manipulating glycolipid synthesis in the cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense technology is a novel drug discovery method, which provides an essential tool for directly using gene sequence information to rationally design specific inhibitions of mRNA, to treat a wide range of diseases. The efficacy of naked oligodeoxynucleotides (ODNs) is relatively short lived due to rapid degradation in vivo. The entrapment of ODNs within biodegradable sustained-release delivery systems may improve ODN stability and reduce dose required for efficacy. Biodegradable polymer microspheres were evaluated as delivery devices for ODNs and ribozymes. Poly(lactide-co-glycolide) polymers were used due to their biocompatibility and non toxic degradation products. Microspheres were prepared using a double emulsion-deposition method and the formulations characterised. In vitro release profiles were characterised by an initial burst effect during the first 48 hours of release followed by a more sustained release. The release profiles were influenced by microsphere size, copolymer molecular weight, copolymer ratio, ODN loading, ODN length, and ODN chemistry. The serum stability of ODNs was significantly improved when entrapped within polymer microspheres. The cellular association of ODNs entrapped within small spheres (1-2μm) was improved by approximately 20-fold in A431 carcinoma cells compared with free ODNs. Fluorescence microscopy studies showed a more diffuse subcellular distribution when delivered as a microsphere formulation compared with free ODNs, which exhibited the characteristic punctate periplasmic distribution. For in vivo evaluation, polymer microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain. Free ODN resulted in a punctate cellular distribution after 24 hours. In comparison ODN delivered using polymer microspheres were intensely visible in cells 48 hours post administration, and fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Whole-body autoradiography was also used to evaluate the biodistribution of free tritium labelled ODN and ODN entrapped microspheres, following subcutaneous administration to Balb-C mice. Polymer entrapped ODN gave a similar biodistribution to free ODN. Free ODN was distributed within 24 hours, whereas polymer released ODN was observed still presented in organs and at the site of administration seven days post administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxynucleotides can selectively inhibit gene expression provided they are delivered to their target site successfully for a sufficient duration. Biodegradable microspheres have previously been developed for the potential systemic delivery of antisense oligodeoxynucleotides and offer an excellent strategy for central administration of antisense oligodeoxynucleotides, providing a sustained-release delivery system. Biodegradable microspheres were formulated to entrap antisense oligodeoxynucleotides for stereotaxic implantation into site-specific regions of the rat brain.Release profiles of antisense oligodeoxynucleotides from biodegradable microspheres over 56 days that were triphasic were observed with high molecular weight polymers. Antisense oligodeoxynucleotides loaded into microspheres (1-10μm) had a five-fold increase in cellular association with glial and neuronal cells compared to the naked molecule, which was partially due to a greater cellular accumulation as observed by a slower efflux profile. In vivo distribution studies of antisense oligodeoxynucleotides demonstrated that the use of microspheres provided a sustained-release over more than 2 days compared to 12 hours of the naked molecule. Efficacy of antisense oligodeoxynucleotides was demonstrated during locomotor activity investigations, which significantly reduced cocaine-induced locomotor activity, where no efficacy was demonstrated with microspheres, possibly attributed to antisense loading and measurements being taken during a lag phase of antisense oligodeoxynucleotide release. Biodegradable microspheres can be delivered site-specifically into the brain and provide sustained-release of antisense oligodeoxynucleotides, offering the potential of in vivo efficacy in these reagents in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a malignant brain tumour for which there is currently no effective treatment regime. It is thought to develop due to the overexpression of a number of genes, including the epidermal growth factor receptor (EGFR), which is found in over 40% of GBM. Novel forms of treatment such as antisense therapy may allow for the specific inhibition of aberrant genes and thus they are optimistic therapies for future treatment of GBM. Oligodeoxynucleotides (ODNs) are small pieces of DNA that are often modified to increase their stability to nucleases and can be targeted to the aberrant gene in order to inhibit it and thus prevent its transcription into protein. By specifically binding to mRNA in an antisense manner, they can bring about its degradation by a variety of mechanisms including the activation of RNase H and thus have great potential as therapeutic agents. One of the main drawbacks to the utilisation of this therapy so far is the lack of techniques that can successfully predict accessible regions on the target mRNA that the ODNs can bind to. DNA chip technology has been utilised here to predict target sequences on the EGFR mRNA and these ODNs (AS 1 and AS2) have been tested in vitro for their stability, uptake into cells and their efficacy on cellular growth, EGFR protein and mRNA. Studies showed that phosphorothioate and 2'O-methyl ODNs were significantly more stable than phosphodiester ODNs both in serum and serum-free conditions and that the mechanism of uptake into A431 cells was temperature dependent and more efficient with the use of optimised lipofectin. Efficacy results show that AS 1 and AS2 phosphorothioate antisense ODNs were capable of inhibiting cell proliferation by 69% ±4% and 65% ±4.5% respectively at 500nM in conjunction with a non-toxic dose of lipofectinTM used to enhance cellular delivery. Furthermore, control ODN sequences, 2' O-methyl derivatives and a third ODN sequence, that was found not to be capable of binding efficiently to the EGFR mRNA by DNA chip technology, showed no significant effect on cell proliferation. AS 1 almost completely inhibited EGFR protein levels within 48 hours with two doses of 500nM AS 1 with no effect on other EGFR family member proteins or by control sequences. RNA analysis showed a decrease in mRNA levels of 32.4% ±0.8% but techniques require further optimisation to confirm this. As there are variations found between human glioblastoma in situ and those developed as xenografts, analysis of effect of AS 1 and AS2 was performed on primary tumour cell lines derived from glioma patients. ODN treatment showed a specific knockdown of cell growth compared to any of the controls used. Furthermore, combination therapies were tested on A431 cell growth to determine the advantage of combining different antisense approaches and that of conventional drugs. Results varied between the combination treatments but indicated that with optimisation of treatment regimes and delivery techniques that combination therapies utilising antisense therapies would be plausible.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Numerous co-factors, genetic, environmental and physical, play an important role in development and prognosis of cancer. Each year in the USA, more than 31,000 cases of oral and 13,000 cases of cervical cancer are diagnosed. Substantial epidemiological data supports a high correlation between development of these cancers and the presence of specific types of human papillomaviruses (HPV). Molecular biological studies show that not only are several of the viral genes necessary and sufficient to cause transformation but they also function synergistically with other co-factors. Evidence suggests that prevention of infection or inhibition of viral gene expression may alter the course of malignant transition. The main objective of this project was to test the hypothesis that some human carcinoma cells, containing HPV, behave in malignant manner because the viral genes function in the maintenance of some aspect of the transformed phenotype.^ The specific aims were (1) to select oral and cervical cancer cell lines which were HPV-negative or which harbored transcriptionally active HPV-18, (2) to construct and determine the effects of recombinant sense or antisense expressing vectors, (3) to test the effects of synthetic antisense oligodeoxynucleotides on the transformed behavior of these cells.^ To screen cells, we performed Southern and Northern analysis and polymerase chain reactions. When antisense-expressing vectors were used, cells harboring low numbers of HPV-18 where unable to survive transfection but they were readily transfected with all other constructs. Rare antisense transfectants obtained from HPV-positive cells showed significantly altered characteristics including malignant potential in nude mice. The HPV-negative cells showed no differences in transfection efficiencies or growth characteristics with any construct.^ In addition, treatment of the HPV-positive cells with antisense, but not random oligodeoxynucleotides, resulted in decreased cell proliferation and even cell death. These effects were dose-dependent, synergistic and HPV-specific.^ These results suggest that expression of viral genes play an important role in the maintenance of the transformed phenotype which implies that inhibition of expression, by antisense molecules, may be therapeutic in HPV-induced tumors. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antisense oligodeoxynucleotides can selectively inhibit individual gene expression provided they remain stable at the target site for a sufficient period of time. Thus, the efficacy of antisense oligodeoxynucleotides may be improved by employing a sustained release delivery system which would protect from degradation by nucleases whilst delivering the nucleic acid in a controlled manner to the site of action. Biodegradable polymer films and micro spheres were evaluated as delivery devices for the oligodeoxynucleotides and ribozymes. Polymers such as polylactide, polyglycolide, polyhydroxybutyrate and polyhydroxyvalerate were used due to their biocompatability and non toxic degradation products. Release profiles of antisense nucleic acids from films over 28 days was biphasic, characterised by an initial burst release during the first 48 hours followed by a more sustained release. Release from films of longer antisense nucleic acids was slower compared to shorter nucleic acids. Backbone type also affected release, although to a lesser extent than length. Total release of the nucleic acids is dependent upon polymer degradation, no degradation of the polymer films was evident over the 28 day period, due to the high molecular weight and crystallinity of the polymers required to make solvent cast films. Backbone length and type did not affect release from microspheres, release was generally faster than from films, due to the increased surface area, and low molecular weight polymers which showed signs of degradation over the release period, resulting in a triphasic release profile. An increase in release was observed when sphere size and polymer molecular weight were decreased. The polymer entrapped phosphodiester oligodeoxynucleotides and ribozymes had enhanced stability compared to free oligodeoxynucleotides and ribozymes when incubated in serum. The released nucleic acids were still capable of hybridising to their target sequence, indicating that the fabrication processes did not adversely effect the properties of the antisense nucleic acids. Oligodeoxynucleotides loaded in 2μm spheres had a 10 fold increase in macrophage association compared to free oligodeoxynucleotides. Fluorescent microscopy indicates that the polymer entrapped oligodeoxynucleotide is concentrated inside the cell, whereas free oligodeoxynucleotides are concentrated at the cell membrane. Biodegradable polymers can reduce the limitations of antisense therapy and thus offer a potential therapeutic advantage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endogenous glucocorticoids and serotonin have been implicated in the pathophysiology of depression, anxiety and schizophrenia. This thesis investigates the potential of downregulating expression of central Type II glucocorticoid receptors (GR) both in vitro and in vivo, with empirically-designed antisense oligodeoxynucleotides (ODN), to characterise GR modulation of 5-HT2A receptor expression using quantitative RT-PCR, Western blot analysis and radioligand binding. The functional consequence of GR downregulation is also determined by measuring 1-(2,5-dimethoxy 4-iodophenyl)-2-amino propane hydrochloride (DOI) mediated 5-HT2A receptor specific headshakes. Using a library of random antisense ODN probes, RNAse H accessibility mapping of T7-primed, in vitro transcribed GR mRNA revealed several potential cleavage sites and identified an optimally effect GR antisense ODN sequence of 21-mer length (GRAS5). In vitro efficacy studies using rat C6 glioma cells showed a 56% downregulation in GR mRNA levels and 80% downregulation in GR protein levels. In the same cells a 29% upregulation in 5-HT2A mRNA levels and 32% upregulation in 5-HT2A protein levels was revealed. This confirmed the optimal nature of the GRAS5 sequence to produce marked inhibition of GR gene expression, and also revealed GR modulation of the 50-HT2A receptor subtype in C6 glioma cells to be a tonic repression of receptor expression. The distribution of a fluorescently-labelled GRAS5 ODN was detected in diverse areas of the rat brain after single ICV administration, although this fluorescence signal was not sustained over a period of 5 days. However, fluorescently-labelled GRAS5 ODN, when formulated in polymer microspheres, showed diverse distribution in the brain which was maintained for 5 days following a single ICV administration. This produced no apparent neurotoxic effects on rat behaviour and hypothalamic-pituitary-adrenal (HPA) axis homeostasis. Furthermore, a single polymer microsphere injection ICV proved to be an effective means of delivering antisense ODNs and this was adopted for the in vivo efficacy studies. In vivo characterisation of GRAS5 revealed marked downregulation of GR mRNA in rat brain regions such as the frontal cortex (26%), hippocampus (35%), and hypothalamus (39%). Downregulation of GR protein was also revealed in frontal cortex (67%), hippocampus (76%), and hypothalamus (80%). In the same animals upregulation of 5-HT2A mRNA levels was shown in frontal cortex (13%), hippocampus (7%), and hypothalamus (5%) while upregulation in 5-HT2A protein levels was shown in frontal cortex (21 %). This upregulation in 5-HT2A receptor density as a result of antisense-mediated inhibition of GR was further confirmed by a 55% increase in DOl-mediated 5-HT2A receptor specific headshakes. These results demonstrate that GR is involved in tonic inhibitory regulation of 5-HT2A receptor expression and function in vivo, thus providing the potential to control 5-HT2A-linked disorders through corticosteroid manipulation. These experiments have therefore established an antisense approach which can be used to investigate pharmacological characteristics of receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La voie de signalisation des phosphoinositides joue un rôle clé dans la régulation du tonus vasculaire. Plusieurs études rapportent une production endogène de l’angiotensin II (Ang II) et de l’endothéline-1 (ET-1) par les cellules musculaires lisses vasculaires (CMLVs) de rats spontanément hypertendus (spontaneously hypertensive rats : SHR). De plus, l’Ang II exogène induit son effet prohypertrophique sur les CMLVs selon un mécanisme dépendant de la protéine Gqα et de la PKCẟ. Cependant, le rôle de l’axe Gqα/PLCβ/PKCẟ dans l’hypertrophie des CMLVs provenant d’un modèle animal de l’hypertension artérielle n’est pas encore étudié. L’objectif principal de cette thèse est d’examiner le rôle de l’axe Gqα/PLCβ1 dans les mécanismes moléculaires de l’hypertrophie des CMLVs provenant d’un modèle animal d’hypertension artérielle essentielle (spontaneously hypertensive rats : SHR). Nos premiers résultats indiquent que contrairement aux CMLVs de SHR âgés de 12 semaines (absence d’hypertrophie cardiaque), les CMLVs de SHR âgés de 16 semaines (présence d’hypertrophie cardiaque) présentent une surexpression protéique endogène de Gqα et de PLCβ1 par rapport aux CMLVs de rats WKY appariés pour l’âge. L’inhibition du taux d’expression protéique de Gqα et de PLCβ1 par des siRNAs spécifiques diminue significativement le taux de synthèse protéique élevé dans les CMLVs de SHR. De plus, la surexpression endogène des Gqα et PLCβ1, l’hyperphosphorylation de la molécule ERK1/2 et le taux de synthèse protéique élevé dans les CMLVs de SHR de 16 semaines ont été atténués significativement par des antagonistes des récepteurs AT1 (losartan) et ETA (BQ123), mais pas par l’antagoniste du récepteur ETB (BQ788). L’inhibition pharmacologique des MAPKs par PD98059 diminue significativement la surexpression endogène de Gqα/PLCβ1 et le taux de synthèse protéique élevé dans les CMLVs de SHR. D’un côté, l’inhibition du stress oxydatif (par DPI, inhibiteur de la NAD(P)H oxidase, et NAC , molécule anti-oxydante), de la molécule c-Src (PP2) et des récepteurs de facteurs de croissance (AG1024 (inhibiteur de l’IGF1-R), AG1478 (inhibiteur de l’EGFR) et AG1295 (inhibiteur du PDGFR)) a permis d’atténuer significativement la surexpression endogène élevée de Gqα/PLCβ1 et l’hypertrophie des CMLVs de SHR. D’un autre côté, DPI, NAC et PP2 atténuent significativement l’hyperphosphorylation de la molécule c-Src, des RTKs (récepteurs à activité tyrosine kinase) et de la molécule ERK1/2. Dans une autre étude, nous avons aussi démontré que la PKCẟ montre une hyperphosphorylation en Tyr311 dans les CMLVs de SHR comparées aux CMLVs de WKY. La rottlerin, utilisée comme inhibiteur spécifique de la PKCẟ, inhibe significativement cette hyperphosphorylation en Tyr311 dépendamment de la concentration. L’inhibition de l’activité de la PKCẟ par la rottlerin a été aussi associée à une atténuation significative de la surexpression protéique endogène de Gqα/PLCβ1 et l’hypertrophie des CMLVs de SHR. De plus, l’inhibition pharmacologique de l’activité de la PKCẟ, en amont du stress oxydatif, a permis d’inhiber significativement l’activité de la NADPH, le taux de production élevée de l’ion superoxyde ainsi que l’hyperphosphorylation de la molécule ERK1/2, de la molécule c-Src et des RTKs. À notre surprise, nous avons aussi remarqué une surexpression protéique de l’EGFR et de l’IGF-1R dans les CMLVs de SHR à l’âge de 16 semaines. L’inhibition pharmacologique de l’activité de la PKCẟ, de la molécule c-Src et du stress oxydatif a permis d’inhiber significativement la surexpression protéique endogène de ces RTKs. De plus, l’inhibition de l’expression protéique de l’EGFR et de la molécule c-Src par des siRNA spécifiques atténue significativement le taux d’expression protéique élevé de Gqα et de PLCβ1 ainsi que le taux de synthèse protéique élevé dans les CMLVs de SHR. Des siRNAs spécifiques à la PKCẟ ont permis d’atténuer significativement le taux de synthèse protéique élevé dans les CMLVs de SHR et confirment le rôle important de la PKCẟ dans les mécanismes moléculaires de l’hypertrophie des CMLVs selon une voie dépendante du stress oxydatif. En conclusion, ces résultats suggèrent un rôle important de l’activation endogène de l’axe Gqα-PLCβ-PKCẟ dans le processus d’hypertrophie vasculaire selon un mécanisme impliquant une activation endogène des récepteurs AT1/ETa, de la molécule c-Src, du stress oxidatif, des RTKs et des MAPKs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-Hodgkin's lymphomas are common tumors of the human immune system, primarily of B cell lineage (NHL-B). Negative growth regulation in the B cell lineage is mediated primarily through the TGF-β/SMAD signaling pathway that regulates a variety of tumor suppressor genes. Ski was originally identified as a transforming oncoprotein, whereas SnoN is an isoform of the Sno protein that shares a large region of homology with Ski. In this study, we show that Ski/SnoN are endogenously over-expressed both in patients' lymphoma cells and NHL-B cell lines. Exogenous TGF-β1 treatment induces down-regulation of Ski and SnoN oncoprotein expression in an NHL-B cell line, implying that Ski and SnoN modulate the TGF-β signaling pathway and are involved in cell growth regulation. Furthermore, we have developed an NHL-B cell line (DB) that has a null mutation in TGF-β receptor type II. In this mutant cell line, Ski/SnoN proteins are not down-regulated in response to TGF-β1 treatment, suggesting that downregulation of Ski and SnoN proteins in NHL-B require an intact functional TGF-β signaling pathway Resting normal B cells do not express Ski until activated by antigens and exogenous cytokines, whereas a low level of SnoN is also present in peripheral blood Go B cells. In contrast, autonomously growing NHL-B cells over-express Ski and SnoN, implying that Ski and SnoN are important cell cycle regulators. To further investigate a possible link between reduction of the Ski protein level and growth inhibition, Ski antisense oligodeoxynucleotides were transfected into NHL-B cells. The Ski protein level was found to decrease to less than 40%, resulting in restoring the effect of TGF-β and leading to cell growth inhibition and G1 cell cycle arrest. Co-immunoprecipitation experiments demonstrated that Ski associates with Smad4 in the nucleus, strongly suggesting that over-expression of the nuclear protein Ski and/or SnoN negatively regulates the TGF-β pathway, possibly by modulating Smad-mediated tumor suppressor gene expression. Together, in NHL-B, the TGF-β/SMAD growth inhibitory pathway is usually intact, but over-expression of the Ski and/or SnoN, which binds to Smad4, abrogates the negative regulatory effects of TGF-β/SMAD in lymphoma cell growth and potentiates the growth potential of neoplastic B cells. ^