943 resultados para Antioxidative enzyme


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To elucidate the role of phenotype in stress-tolerant bloom-forming cyanobacterium Microcystis, two phenotypes of M. aeruginosa-unicellular and colonial strains were selected to investigate how they responded to copper stress. Flow cytometry (FCM) examination indicated that the percents of viable cells in unicellular and colonial Microcystis were 1.92-2.83% and 72.3-97.51%, respectively, under 0.25 mg l(-1) copper sulfate treatment for 24 h. Upon exposure to 0.25 mg l(-1) copper sulfate, the activities of antioxidative enzyme, such as superoxide dismutase (SOD) and catalase (CAT), were significantly increased in colonial Microcystis compared to unicellular Microcystis. Meanwhile, the values of the photosynthetic parameters (F-v/F-m, ETRmax and oxygen evolution rate) decreased more rapidly in unicellular Microcystis than in colonial Microcystis. The results indicate that colonial Microcystis has a higher endurance to copper than unicellular Microcystis. This suggests that the efficient treatment concentration of copper sulfate as algaecides will be dependent on the phenotypes of Microcystis. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An algalytic bacterium provisionally designated as TL1 was isolated from Tai Lake, a large freshwater lake in the Yangtze Delta plain on the border of the Jiangsu and Zhejiang provinces and close to Wuxi city in the People's Republic of China. Strain TL1 was identified as Achromobacter sp. based on its biophysical and biochemical properties and the analysis of its 16S rRNA sequence. Microcystis aeruginosa, which is the most common toxic cyanobacterium in eutrophic freshwater, could be decomposed by strain TL1. The results showed that after inoculation with the algalytic bacterium, the content of chlorophyll-a, maximum PSII quantum yield, and maximum electron transport rates of the alga decreased sharply. At first, the algal cells enhanced the activities of some antioxidative enzymes, but subsequently, the activities of antioxidative enzymes fell sharply once damage of the algal cells was achieved. The filtrate from strain TL1 culture suspension, after autoclaving and treatments with proteinase K, strongly inhibited algal growth, indicating that the lytic metabolites were extracellular and thermostable, not a protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aetiology of apoE4 genotype-Alzheimer's disease (AD) association are complex. The current study emphasizes the impact of apoE genotype and potential beneficial effects of vitamin E (VE) in relation to oxidative stress. Agonist induced neuronal cell death was examined 1) in the presence of conditioned media containing equal amounts of apoE3 or apoE4 obtained from stably transfected macrophages, and 2) after pretreatment with alpha- and gamma-tocopherol, and -tocotrienol. ApoE3 and apoE4 transgenic mice were fed a diet poor or rich in VE to study the interplay of both apoE genotype and VE status, on membrane lipid peroxidation, antioxidative enzyme activity and glutathione levels in the brain. Cytotoxicity of hydrogen peroxide and glutamate was higher in neuronal cells cultured with apoE4 than apoE3 conditioned media. VE pre-treatment of neurons counteracted the cytotoxicity of a peroxide challenge but not of nitric oxide. No significant effects of apoE genotype or VE supplementation were observed on lipid peroxidation or antioxidative status in the brain of apoE3 and apoE4 mice. VE protects against oxidative insults in vitro, however, no differences in brain oxidative status were observed in mice. Unlike in cultured cells, apoE4 may not contribute to higher neuronal oxidative stress in the brain of young targeted replacement mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Erkrankung Amyotrophe Lateralsklerose (ALS) ist gekennzeichnet durch eine progressive Degeneration der Motoneurone. Die hierdurch im Patienten hervorgerufene fortschreitende Paralyse kann von wenigen Wochen über Monate bis zu mehreren Jahren variieren. Im Durchschnitt beträgt die Krankheitsdauer 3 - 5 Jahre. Häufig führt respiratorische Insuffizienz letztendlich zum Tod des Patienten. ALS ist bis heute unheilbar. Etwa 10 % aller ALS Fälle zeigen einen familiären Hintergrund. Hiervon werden ~20 % durch Mutationen im Gen des antioxidativen Enzyms CuZnSuperoxiddismutase (SOD1) verursacht. Mehr als 150 Mutationen im Gen der SOD1 wurden bisher als Auslöser der ALS beschrieben. Durch die Mutation erlangen SOD1 Proteine zusätzliche, bisher jedoch unbekannte toxische Eigenschaften. Ein dismutaseaktives SOD1 Enzym setzt sich aus zwei SOD1 Untereinheiten zusammen. Aufgrund der autosomal dominanten Vererbung der Krankheit kann ein SOD1 Dimer im Patienten als wildtypisches Homodimer (SOD1WT‑WT), als mutantes Homodimer (SOD1mut‑mut) oder als Heterodimer (SOD1mut-WT) vorliegen. In dieser Arbeit wurden SOD1 Dimere untersucht, deren Untereinheiten kovalent miteinander verbunden waren. Es konnte gezeigt werden, dass sich die biochemischen und biophysikalischen Eigenschaften mutanter SOD1 Heterodimere von mutanten SOD1 Homodimeren mit der gleichen Mutation unterschieden. Mutante SOD1 Heterodimere wiesen eine höhere Resistenz gegen einen Abbau durch Proteinase K auf als ihre korrespondierenden Homodimere. Des Weiteren verminderte eine wildtypische Untereinheit die Interaktion der Heterodimere mit Antikörpern gegen fehlgefaltete SOD1. Die Sekundärstruktur der mutanten SOD1 Heterodimere unterschied sich hierbei nicht auffällig von der Sekundärstruktur ihrer zugehörigen Homodimere. Eine wildtypische Untereinheit verändert somit möglicherweise die Tertiärstruktur seiner kovalent gebundenen mutanten SOD1 Untereinheit und/oder die Konformation des gesamten Dimerproteins. Durch die Mutation bedingte Missfaltungen werden hierdurch reduziert, die Stabilität des Dimers gegenüber proteolytischem Abbau erhöht. Nach der Aufreinigung der Dimerproteine wies das mutanten SOD1 Heterodimer diese Eigenschaften nicht mehr auf. Ein potentieller Interaktionspartner, der eine verminderte Fehlfaltung des Heterodimers oder eine verstärkte Missfaltung des Homodimers fördert, könnte hierbei während der Aufreinigungsprozedur verlorengegangen sein. Die hier nachgewiesene Konformationsänderung könnte über einen Prionen-ähnlichen Effekt übertragen werden und die erhöhte Stabilität das mutante, toxische Protein vor Degradation schützen. Dies korreliert mit der Beobachtung früherer Studien, in denen nachgewiesen wurde, dass mutante SOD1 Heterodimere potentiell toxischer sind als ihre korrespondierenden Homodimere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolic switch From C-3-photosynthesis to crassulacean acid metabolism (CAM),and the antioxidative response of Mesembryanthemum crystallinum L. plants cultured under severe salt stress and high light intensities, and a combination of booth stress conditions, were studied. High light conditions led to a more rapid CAM induction than salinity. The induction time was still shortened when both stress factors were combined. A main pattern observed in CAM plants was a decrease in mitochondrial Mn-superoxide dismutase (SOD) activity during the day. The activities of the chloroplastic Fe-SOD and cytosolic CuZn-SOD were increased due to salt treatment after a lag phase, while catalase activity was decreased. Combination of salt and light stress did not lead to a higher SOD activity as found after application of one stress factor alone, indicating that there is a threshold level of the oxidative stress response. The fact that salt-stressed plants grown under high light conditions showed permanent photoinhibition and lost the ability for nocturnal malate storage after 9 d of treatment indicate serious malfunction of metabolism, leading to accelerated senescence. Comparison of CuZn-SOD activity with CuZn-SOD protein amount, which was determined immunologically, indicates that the activity of the enzyme is at least partially post-translationally regulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the potential of active compounds derived from moss in the prevention and treatment of various diseases. Methods: Three species of moss were extracted with deionized water at 95 °C, and with 70.5 % ethanol at 85 °C. Analysis of total phenolic contents (TPC) of the extracts were performed by FolinCiocalteu (FC) method. The antioxidant activity of the extracts were determined using three methods, namely, by 2,2\'-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). In vivo effects were evaluated in mice fed high fat diet (HFD) supplemented with 20 % ground moss. Cholesterol levels in HFD were evaluated by ophthalaldehyde method. Serum triglyceride levels were measured using triglyceride (TG) kit, while blood insulin level and leptin concentration were measured by enzyme-linked immunosorbent assay (ELISA) kit. Results: The moss extracts exhibited antioxidative effects, as evidenced of . TPC of 47.20 ± 11.20 to 119.87 ± 11.51 mg GAE/mg, respectively. ABTS scavenging activity was 1078.11 ± 18.95 to 2587.33 ± 46.19 μmol Trolox/mg, DPPH scavenging activity of were 42.11 ± 8.22 to 298.78 ± 20.02 μmol Trolox/mg, and FRAP value of 393.19 ± 24.64 to 1070.14 ± 17.92 μmol Trolox/mg, respectively. Mice fed with 20 % ground moss did not show any significant effect (p < 0.05) on visceral weight and blood lipid levels of HFD, while leptin concentrations reduced significantly to 4.74 ± 0.00 and 0.20 ± 0.00 ng/dL) relative to HFD alone (26.72 ± 6.53 ng/dL). Conclusion: Moss can potentially be used as an antioxidative ingredient, for the improvement of overall human health, suggesting that important medical benefits associated with moss consumption. However, further investigations are required to ascertain this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two archaeal Holliday junction resolving enzymes, Holliday junction cleavage (Hjc) and Holliday junction endonuclease (Hje), have been characterized. Both are members of a nuclease superfamily that includes the type II restriction enzymes, although their DNA cleaving activity is highly specific for four-way junction structure and not nucleic acid sequence. Despite 28% sequence identity, Hje and Hjc cleave junctions with distinct cutting patterns—they cut different strands of a four-way junction, at different distances from the junction centre. We report the high-resolution crystal structure of Hje from Sulfolobus solfataricus. The structure provides a basis to explain the differences in substrate specificity of Hje and Hjc, which result from changes in dimer organization, and suggests a viral origin for the Hje gene. Structural and biochemical data support the modelling of an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junction centre. A highly conserved serine residue on this loop is shown to be essential for the enzyme's activity, suggesting a novel variation of the nuclease active site. The loop may act as a conformational switch, ensuring that the active site is completed only on binding a four-way junction, thus explaining the exquisite specificity of these enzymes.