946 resultados para Antimicrobial resistance genes
Resumo:
To investigate the occurrence of antimicrobial resistance genes of human clinical relevance in Salmonella isolated from livestock in Great Britain. Two hundred and twenty-five Salmonella enterica isolates were characterized using an antimicrobial resistance gene chip and disc diffusion assays. Plasmid profiling, conjugation experiments and identification of Salmonella genomic island 1 (SGI1) were performed for selected isolates. Approximately 43% of Salmonella harboured single or multiple antimicrobial resistance genes with pig isolates showing the highest numbers where 96% of Salmonella Typhimurium harboured one or more resistance genes. Isolates harbouring multiple resistances divided into three groups. Group 1 isolates harboured ampicillin/streptomycin/sulphonamide/tetracycline resistance and similar phenotypes. This group contained isolates from pigs, cattle and poultry that were from several serovars including Typhimurium, 4,[5],12:i:-, Derby, Ohio and Indiana. All Group 2 isolates were from pigs and were Salmonella Typhimurium. They contained a non-sul-type class 1 integron and up to 13 transferrable resistances. All Group 3 isolates harboured a class 1 integron and were isolated from all animal species included in the study. Most isolates were Salmonella Typhimurium and harboured SGI1. Salmonella isolated from livestock was shown to harbour antimicrobial resistance genes although no or little resistance to third-generation cephalosporins or ciprofloxacin, respectively, was detected. The preponderance in pigs of multidrug-resistant Salmonella Typhimurium makes it important to introduce control measures such as improved biosecurity to ensure that they do not pass through the food chain and limit human therapeutic options.
Resumo:
Background: Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. Methodology/Principal Findings: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to >= 15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, blaTEM21, tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. Conclusions: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes.
Resumo:
We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum beta-lactamases. Validation of the array with control strains demonstrated a 99% correlation between polymerase chain reaction and array results. There was also good correlation between phenotypic and genotypic results for a large panel of Escherichia coli and Salmonella isolates. Some differences were also seen in the number and type of resistance genes harboured by E. coli and Salmonella strains. The array provides an effective, fast and simple method for detection of resistance genes in clinical isolates suitable for use in diagnostic laboratories, which in future will help to understand the epidemiology of isolates and to detect gene linkage in bacterial populations. (C) 2008 Published by Elsevier B.V. and the International Society of Chemotherapy.
Resumo:
INTRODUCTION: The prevalence of cephalosporins and carbapenem-resistant Klebsiella pneumoniae strains is rising in Brazil, with potential serious consequences in terms of patients' outcomes and general care. METHODS: This study characterized 24 clinical isolates of K. pneumoniae from two hospitals in Recife, Brazil, through the antimicrobial susceptibility profile, analyses of β-lactamase genes (blaTEM, blaSHV,blaCTX-MblaKPC, blaVIM, blaIMP, and blaSPM), plasmidial profile and ERIC-PCR (Enterobacterial repetitive intergenic consensus-polymerase chain reaction). RESULTS: ERIC-PCR and plasmidial analysis grouped the isolates in 17 and 19 patterns, respectively. Six isolates from one hospital presented the same pattern by ERIC-PCR, indicating clonal dissemination. All isolates presented blaSHV, 62.5% presented blaCTX-M-2, 29% blaTEM, and 41.7% blaKPC. Metallo-β-lactamase genes blaand blawere not detected. Eleven isolates were identified carrying at least 3 β-lactamase studied genes, and 2 isolates carried blaSHVblaTEM, blaCTX-M-2 and blaKPC simultaneously. CONCLUSIONS: The accumulation of resistance genes in some strains, observed in this study, imposes limitations in the therapeutic options available for the treatment of infections caused by K. pneumoniae in Recife, Brazil. These results should alert the Brazilian medical authorities to establish rigorous methods for more efficiently control the dissemination of antimicrobial resistance genes in the hospital environment.
Resumo:
Objectives: To determine clonality and identify plasmid-mediated resistance genes in 11 multidrug-resistant Escherichia coli (MDREC) isolates associated with opportunistic infections in hospitalized dogs in Australia. Methods: Phenotypic (MIC determinations, modified double-disc diffusion and isoelectric focusing) and genotypic methods (PFGE, plasmid analysis, PCR, sequencing, Southern hybridization, bacterial conjugation and transformation) were used to characterize, investigate the genetic relatedness of, and identify selected plasmid-mediated antimicrobial resistance genes, in the canine MDREC. Results: Canine MDRECs were divided into two clonal groups (CG 1 and 2) with distinct restriction endonuclease digestion and plasmid profiles. All isolates possessed bla(CMY-7) on an similar to 93 kb plasmid. In CG 1 isolates, bla(TEM), catA1 and class 1 integron-associated dfrA17-aadA5 genes were located on an similar to 170 kb plasmid. In CG 2 isolates, a second similar to 93 kb plasmid contained bla(TEM) and unidentified class 1 integron genes, although a single CG 2 strain carried dfrA5. Antimicrobial susceptibility profiling of E. coli K12 transformed with CG 2 large plasmids confirmed that the bla(CMY-7)-carrying plasmid did not carry any other antimicrobial resistance genes, whereas the bla(TEM)/class 1 integron-carrying plasmid carried genes conferring resistance to tetracycline and streptomycin also. Conclusions: This is the first report on the detection of plasmid-mediated bla(CMY-7) in animal isolates in Australia. MDREC isolated from extraintestinal infections in dogs may be an important reservoir of plasmid-mediated resistance genes.
Resumo:
INTRODUCTION: Staphylococcal species are pathogens that are responsible for outbreaks of foodborne diseases. The aim of this study was to investigate the prevalence of enterotoxin-genes and the antimicrobial resistance profile in staphylococcus coagulase-negative (CoNS) and coagulasepositive (CoPS) isolates from black pudding in southern Brazil. METHODS: Two hundred typical and atypical colonies from Baird-Parker agar were inoculated on mannitol salt agar. Eighty-two mannitol-positive staphylococci were submitted to conventional biochemical tests and antimicrobial susceptibility profiling. The presence of coagulase (coa) and enterotoxin (se) genes was investigated by polymerase chain reaction. RESULTS: The isolates were divided into 2 groups: 75.6% (62/82) were CoNS and 24.4% (20/82) were CoPS. The biochemical tests identified 9 species, of which Staphylococcus saprophyticus (37.8%) and Staphylococcus carnosus (15.9%) were the most prevalent. Antimicrobial susceptibility tests showed resistance phenotypes to antibiotics widely administered in humans, such as gentamicin, tetracycline, chloramphenicol, and erythromycin. The coa gene was detected in 19.5% (16/82) of the strains and 4 polymorphic DNA fragments were observed. Five CoNS isolates carrying the coa gene were submitted for 16S rRNA sequencing and 3 showed similarity with CoNS. Forty strains were positive for at least 1 enterotoxin-encoding gene, the genes most frequently detected were sea (28.6%) and seb (27.5%). CONCLUSIONS: The presence of antimicrobial resistant and enterotoxin-encoding genes in staphylococci isolates from black pudding indicated that this fermented food may represent a potential health risk, since staphylococci present in food could cause foodborne diseases or be a possible route for the transfer of antimicrobial resistance to humans.
Resumo:
Abstract: INTRODUCTION: Carbapenems are the therapy of choice for treating severe infections caused by the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. We aimed to assess the prevalence and antimicrobial susceptibility profiles of producers of distinct oxacillinases among nosocomial isolates of the A. calcoaceticus-A. baumannii complex in a 249-bed general hospital located in Joinville, Southern Brazil. METHODS: Of the 139 A. baumannii clinical isolates with reduced susceptibility to carbapenems between 2010 and 2013, 118 isolates from varying anatomical sites and hospital sectors were selected for genotypic analysis. Five families of genes encoding oxacillinases, namely blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like, and blaOXA-143-like, wereinvestigated by multiplex polymerase chain reaction (PCR). RESULTS: Most (87.3%) isolates simultaneously carried the blaOXA-23-likeand blaOXA-51-likegenes, whereas three (2.5%) isolates harbored only blaOXA-51-likeones. The circulation of carbapenem-resistant isolates increased during the study period: from none in 2010, to 22 in 2011, 64 in 2012, and 53 in 2013. CONCLUSIONS: Isolates carrying the blaOXA-23-likeand blaOXA-51-likegenes were widely distributed in the hospital investigated. Because of the worsening scenario, the implementation of preventive measures and effective barriers is needed.
Resumo:
The incidence of Shigella spp. was assessed in 877 infants from the public hospital in Rondônia (Western Amazon region, Brazil) where Shigella represents the fourth cause of diarrhea. Twenty-five isolates were identified: 18 were Shigella flexneri, three Shigella sonnei, three Shigella boydii and one Shigella dysenteriae. With the exception of S. dysenteriae, all Shigella spp. isolated from children with diarrhea acquired multiple antibiotic resistances. PCR detection of ipa virulence genes and invasion assays of bloody diarrhea and fever (colitis) were compared among 25 patients testing positive for Shigella. The ipaH and ipaBCD genes were detected in almost all isolates and, unsurprisingly, all Shigella isolates associated with colitis were able to invade HeLa cells. This work alerts for multiple antibiotic resistant Shigella in the region and characterizes presence of ipa virulence genes and invasion phenotypesin dysenteric shigellosis.
Resumo:
Diarrhoeal disease is still considered a major cause of morbidity and mortality among children. Among diarrhoeagenic agents, Shigella should be highlighted due to its prevalence and the severity of the associated disease. Here, we assessed Shigella prevalence, drug susceptibility and virulence factors. Faeces from 157 children with diarrhoea who sought treatment at the Children's Hospital João Paulo II, a reference children´s hospital in Belo Horizonte, state of Minas Gerais, Brazil, were cultured and drug susceptibility of the Shigella isolates was determined by the disk diffusion technique. Shigella virulence markers were identified by polymerase chain reaction. The bacterium was recovered from 10.8% of the children (88.2% Shigella sonnei). The ipaH, iuc, sen and ial genes were detected in strains isolated from all shigellosis patients; set1A was only detected in Shigella flexneri. Additionally, patients were infected by Shigella strains of different ial, sat, sen and set1A genotypes. Compared to previous studies, we observed a marked shift in the distribution of species from S. flexneri to S. sonnei and high rates of trimethoprim/sulfamethoxazole resistance.
Resumo:
The present study evaluated the pheno- and genotypical antimicrobial resistance profile of coagulase-negative Staphylococcus (CNS) species isolated from dairy cows milk, specially concerning to oxacillin. Of 100 CNS isolates, the S. xylosus was the prevalent species, followed by S. cohnii, S. hominis, S. capitis and S. haemolyticus. Only 6% were phenotypically susceptible to the antimicrobial agents tested in disk diffusion assay. Penicillin and ampicillin resistance rates were significantly higher than others antimicrobials. Four isolates were positive to mecA gene (4%), all represented by the S. xylosus species. The blaZ gene was detected in 16% of the isolates (16/100). It was noticed that all mecA + were also positive to this gene and the presence of both genes was correlated to phenotypic beta-lactamic resistance. We conclude that CNS species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic and genotypic tests, which has implications for treatment and management decisions.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Salmonellosis is a major health problem worldwide. Serovar Enteritidis has been a primary cause of Salmonella outbreaks in many countries. In Brazil, few molecular typing studies have been performed. The aims of this study were to molecularly type Salmonella Enteritidis strains isolated in Brazil in order to determine the genetic relationship between strains of food and human origin, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 128 S. Enteritidis strains isolated from human feces (67) and food (61) between 1986 and 2010 were studied. The genotypic diversity was assessed by ERIC-PCR and PFGE using Xbal, the antimicrobial resistance by the disc-diffusion assay and the presence of the SPI-1, SPI-2 and pSTV virulence genes assessed by PCR. The ERIC-PCR results revealed that 112 strains exhibited a similarity of >85.4% and the PFGE that 96 strains exhibited a similarity of >80.0%. Almost all strains (97.6%) harbored all 13 virulence genes investigated. Thirty-six strains (28.12%) were resistant to nalidixic acid. In conclusion, the nalidixic acid resistance observed after 1996 is indicative of an increase in the use of this drug. It may be suggested that these 128 strains might have descended from a common ancestor that differed little over 24 years and has been both contaminating food and humans and causing disease for more than two decades in Brazil. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in Sao Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46) of isolates belonged to capsular type A, and 54.34% (25/46) of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin.
Resumo:
From January to December 2006, 92 Escherichia coli isolates from 25 diarrheic dogs were analyzed by screening for the presence of adhesin-encoding genes (pap, sfa, afa), hemolysin and aerobactin genes. Virulence gene frequencies detected in those isolates were: 12% pap, 1% sfa, 10% hemolysin and 6.5% aerobactin. Ten isolates were characterized as extraintestinal pathogenic E. coli (ExPEC) strains; all showed a multidrug resistance phenotype that may represent a reason for concern due the risk of dissemination of antimicrobial resistant genes to the microbiota of human beings.
Resumo:
Antimicrobial therapy is one of the main stones of sepsis therapy. A recent study of septic shock patients showed that each hour of delay in antimicrobial administration during the ensuing 6 h after the onset of hypotension was associated with a decrease in survival rates. However, many questions regarding the impact of infection caused by antimicrobial-resistant pathogens on the mortality of patients with sepsis still need to be clarified. There is a lack of fair studies in the literature. Most studies have had inadequate sample size, inadequate adjustment for predictors of adverse outcomes, and inadequate definition of appropriate antibiotic therapy. Despite the fact that appropriate therapy is essential to treat sepsis, it seems that severity of underlying diseases and comorbidities are more important than resistance, although the studies were not well designed to examine the real impact of resistance on outcome. Finally, new technologies such as microarray that can identify different microorganisms, genes of resistance, and virulence in a few hours might have a great impact on the treatment of sepsis due to antimicrobial-resistant pathogens in the future.