953 resultados para Antimicrobial polymers


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Composites with antimicrobial activity are of great interest nowadays and the development of titanium dioxide with these functional properties presents interest in academic and industrial sectors.An approach to develop PE composite containing silver microparticles to have an antimicrobial effect is presented. To obtain such antimicrobial composites, LDPE/EVA were processed with Ag particles on TiO2 particles as inorganic carrier substance. Titanium dioxide nanoparticles (P-25) were covered with silver particles using Turkevich Method or citrate reduction method. The Ag/TiO2 particles were dispersed at concentration of 0,8 wt% and 1% wt% in LDPE/ethylene vinyl acetate copolymer (EVA)-(50% w/w) at the melt state in a Haake torque Rheometer. Silver microparticles were characterized with UV-Vis Spectroscopy. The composites thus prepared were characterized through XRD, Ares Rheometer, Scanning Electronic Microscopy (SEM) and JIS Z 2801 antimicrobial tests to study the effects of the addition of particles on rheological properties, morphological behavior and antimicrobial properties. The results showed that incorporation of silver/titanium dioxide particles on composites obtained systems with differents dispersions. The Ag/TiO2 particles showed uniform distribution of Ag on TiO2 particles as observed by SEM-EDX and antimicrobial tests according to JIS Z 2801 shows excellent antimicrobial properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from four different oxazoline monomers. The polymerization reactions were conducted in supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living polymers were then end-capped with different types of amines, in order to confer them antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. After functionalization the obtained polymers were isolated, purified and characterized by standard techniques (FT-IR, NMR, MALDI-TOF and GPC). The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. High concentration of carbonyl groups in the polymer backbone is appointed as a key structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential applications. Microbiological assays were also performed in order to evaluate their antimicrobial profile against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia coli AB1157 strains, two well known and difficult to control pathogens. The minimum inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both strains were determined. The end-capping with N,N-dimethyldodecylamine of living poly(2- methyl-2-oxazoline) and poly(bisoxazoline) led to materials with higher MIC values but fast killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 hours in contact with S.aureus. Such huge differences in the biocidal behavior of the different polymers can possibly underlie different mechanisms of action. In the future, studies to elucidate the obtained data will be performed to better understand the killing mechanisms of the polymers through the use of microbial cell biology techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studied the physical immobilization of a commercial laccase on bacterial nanocellulose (BNC) aiming to identify the laccase antibacterial properties suitable for wound dressings. Physico-chemical analysis demonstrates that the BNC structure is manly formed by pure crystalline I cellulose. The pH optimum and activation energy of free laccase depends on the substrate employed corresponding to pH 6, 7, 3 and 57, 22, 48 kJ mol1 for 2,6-dimethylphenol (DMP), catechol and 2,2 -azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. The Michaelis-Menten constant (Km) value for the immobilized laccase (0.77 mM) was found to be almost double of that of the free enzyme (0.42 mM). However, the specific activities of immobilized and free laccase are similar suggesting that the cage-like structure of BNC allows entrapped laccase to maintain some flexibility and favour substrate accessibility. The results clearly show the antimicrobial effect of laccase in Gram-positive (92%) and Gram-negative (26%) bacteria and cytotoxicity acceptable for wound dressing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid nanoparticles from cationic lipid and polymers were prepared and characterized regarding physical properties and antimicrobial activity. Carboxymethylcellulose (CMC) and polydiallyldimethylammonium chloride (PDDA) were sequentially added to cationic bilayer fragments (BF) prepared from ultrasonic dispersion in water of the synthetic and cationic lipid dioctadecyldimethylammonium bromide (DODAB). Particles thus obtained were characterized by dynamic light-scattering for determination of z-average diameter (Dz) and zeta-potential (zeta). Antimicrobial activity of the DODAB BF/CMC/PDDA particles against Pseudomonas aeruginosa or Staphylococcus aureus was determined by plating and CFU counting over a range of particle compositions. DODAB BF/CMC/PDDA particles exhibited sizes and zeta-potentials strictly dependent on DODAB, CM C, and PDDA concentrations. At 0.1 mM DODAB, 0.1 mg/mL CMC, and 0.1 mg/mL PDDA, small cationic particles with Dz = 100 nm and zeta = 30 mV were obtained. At 0.5 mM DODAB, 0.5 mg/mL CMC and 0.5 mg/mL PDDA, large cationic particles with Dz = 470 nm and zeta= 50 mV were obtained. Both particulates were highly reproducible regarding physical properties and yielded 0% of p. aeruginosa viability (10(7) CFU/mL) at 1 or 2 mu g/mL PDDA dissolved in solution or in form of particles, respectively. 99% of S. aureus cells died at 10 mu g/mL PDDA alone or in small or large DODAB BF/CMC/PDDA particles. The antimicrobial effect was dependent on the amount of positive charge on particles and independent of particle size. A high microbicide potency for PDDA over a range of nanomolar concentrations was disclosed. P. aeruginosa was more sensitive to all cationic assemblies than S. aureus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research has clarified the properties required for polymers that resist bacterial colonisation for use in medical devices. The increase in antibiotic-resistant microorganisms has prompted interest in the use of silver as an antimicrobial agent. Silver-based polymers can protect the inner and outer surfaces of devices against the attachment of microorganisms. Thus, this review focuses on the mechanisms of various silver forms as antimicrobial agents against different microorganisms and biofilms as well as the dissociation of silver ions and the resulting reduction in antimicrobial efficacy for medical devices. This work suggests that the characteristics of released silver ions depend on the nature of the silver antimicrobial used and the polymer matrix. In addition, the elementary silver, silver zeolite and silver nanoparticles, used in polymers or as coatings could be used as antimicrobial biomaterials for a variety of promising applications. (C) 2009 Elsevier B. V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the rheological properties and antibacterial efficacy of chitosan/ alpha-hydroxy acids (lactic acid and glycolic acid) and cellulose polymers, both in hydrogels, in order to produce a formulation with improved activity against Propionibacterium acnes and Staphylococcus aureus, which can potentially be used in the treatment of acne. The rheological characterisation of the hydrogels was examined using continuous shear and viscoelastic creep. The antibacterial activities of formulations were performed by the well diffusion and broth microdilution. The hydrogels formulated with only chitosan showed pseudoplastic behavior while the chitosan hydrogels with cellulose polymers presented viscoelastic properties. The antibacterial activity was proportional to AHA and chitosan concentration. It was enhanced at low pH values and with high molecular weight chitosan and did not change with the incorporation of two cellulose polymers. The antibacterial mechanism of chitosan has currently been hypothesized as being related to surface interference. The results show that chitosan - based hydrogels containing AHA and cellulose polymers are viscoelastic,indicating good applicability onto the skin, and they present bacterial activity under various experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Silver nanoparticles (AgNps) have attracted much interest in biomedical engineering, since they have excellent antimicrobial properties. Therefore, AgNps have often been considered for incorporation into medical products for skin pathologies to reduce the risk of contamination. This study aims at evaluating the antimicrobial effectiveness of AgNps stabilized by pluronic™ F68 associated with other polymers such as polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Methods AgNps antimicrobial activity was evaluated using the minimum inhibitory concentration (MIC) method. The action spectrum was evaluated for different polymers associated with pluronic™ F68 against the gram negative bacteria P. aeuroginosa and E. coli and the gram positive bacteria S. Aureus. Results AgNps stabilized with PVP or PVA and co-stabilized with pluronic™ F68 are effective against E. coli and P. aeruginosa microorganisms, with MIC values as low as 0.78% of the concentration of the original AgNps dispersion. The antimicrobial action against S. aureus is poor, with MIC values not lower than 25%. Conclusions AgNps stabilized by different polymeric systems have shown improved antimicrobial activity against gram-negative microorganisms in comparison to unstabilized AgNps. Co-stabilization with the bioactive copolymer pluronic™ F68 has further enhanced the antimicrobial effectiveness against both microorganisms. A poor effectiveness has been found against the gram-positive S. aureus microorganism. Future assays are being delineated targeting possible therapeutic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contrary to previously held beliefs, it is now known that bacteria exist not only on the surface of the skin but they are also distributed at varying depths beneath the skin surface. Hence, in order to sterilise the skin, antimicrobial agents are required to penetrate across the skin and eliminate the bacteria residing at all depths. Chlorhexidine is an antimicrobial agent with the widest use for skin sterilisation. However, due to its poor permeation rate across the skin, sterilisation of the skin cannot be achieved and, therefore, the remaining bacteria can act as a source of infection during an operation or insertion of catheters. The underlying theme of this study is to enhance the permeation of this antimicrobial agent in the skin by employing chemical (enhancers and supersaturated systems) or physical (iontophoresis) techniques. The hydrochloride salt of chlorhexidine (CHX), a poorly soluble salt, was used throughout this study. The effect of ionisation on in vitro permeation rate across the excised human epidennis was investigated using Franz-type diffusion cells. Saturated solutions of CHX were used as donor and the variable studied was vehicle pH. Permeation rate was increased with increasing vehicle pH. The pH effect was not related to the level of ionisation of the drug. The effect of donor vehicle was also studied using saturated solutions of CHX in 10% and 20% ethanol as the donor solutions. Permeation of CHX was enhanced by increasing the concentration of ethanol which could be due to the higher concentration of CHX in the donor phase and the effect of ethanol itself on the membrane. The interplay between drug diffusion and enhancer pretreatment of the epidennis was studied. Pretreatment of the membrane with 10% Azone/PG demonstrated the highest diffusion rate followed by 10% olcic acid/PG pretreatment compared to other pretreatment regimens (ethanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium bromide (DT AB). Differential Scanning Calorimetry (DSC) was also employed to study the mode of action of these enhancers. The potential of supersaturated solutions in enhancing percutaneous absorption of CHX was investigated. Various anti-nucleating polymers were screened in order to establish the most effective agent. Polyvinylpyrrolidone (PVP, K30) was found to be a better candidate than its lower molecular weight counterpart (K25) and hydroxypropyl methyleellulose (HPMC). The permeation studies showed an increase in diffusion rate by increasing the degree of saturation. Iontophoresis is a physical means of transdemal drug delivery enhancement that causes an increased penetration of molecules into or through the skin by the application of an electric field. This technique was employed in conjunction with chemical enhancers to assess the effect on CHX permeation across the human epidermis. An improved transport of CHX, which was pH dependant was observed upon application of the current. Combined use of iontophoresis and chemical enhancers further increased the CHX transport indicating a synergistic effect. Pretreatment of the membrane with 10% Azone/PG demonstrated the greatest effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis is one of the most devastating diseases in the world primarily due to several decades of neglect and an emergence of multidrug-resitance strains (MDR) of M. tuberculosis together with the increased incidence of disseminated infections produced by other mycobacterium in AIDS patients. This has prompted the search for new antimycobacterial drugs. A series of pyridine-2-, pyridine-3-, pyridine-4-, pyrazine and quinoline-2-carboxamidrazone derivatives and new classes of carboxamidrazone were prepared in an automated fashion and by traditional synthesis. Over nine hundred synthesized compounds were screened for their anti mycobacterial activity against M. fortutium (NGTG 10394) as a surrogate for M. tuberculosis. The new classes of amidrazones were also screened against tuberculosis H37 Rv and antimicrobial activities against various bacteria. Fifteen tested compounds were found to provide 90-100% inhibition of mycobacterium growth of M. tuberculosis H37 Rv in the primary screen at 6.25 μg mL-1. The most active compound in the carboxamidrazone amide series had an MIG value of 0.1-2 μg mL-1 against M. fortutium. The enzyme dihydrofolate reductase (DHFR) has been a drug-design target for decades. Blocking of the enzymatic activity of DHFR is a key element in the treatment of many diseases, including cancer, bacterial and protozoal infection. The x-ray structure of DHFR from M. tuberculosis and human DHFR were found to have differences in substrate binding site. The presence of glycerol molecule in the Xray structure from M. tuberculosis DHFR provided opportunity to design new antifolates. The new antifolates described herein were designed to retain the pharmcophore of pyrimethamine (2,4- diamino-5(4-chlorophenyl)-6-ethylpyrimidine), but encompassing a range of polar groups that might interact with the M. tuberculosis DHFR glycerol binding pockets. Finally, the research described in this thesis contributes to the preparation of molecularly imprinted polymers for the recognition of 2,4-diaminopyrimidine for the binding the target. The formation of hydrogen bonding between the model functional monomer 5-(4-tert-butyl-benzylidene)-pyrimidine-2,4,6-trione and 2,4-diaminopyrimidine in the pre-polymerisation stage was verified by 1H-NMR studies. Having proven that 2,4-diaminopyrimidine interacts strongly with the model 5-(4-tert-butylbenzylidene)- pyrimidine-2,4,6-trione, 2,4-diaminopyrimidine-imprinted polymers were prepared using a novel cyclobarbital derived functional monomer, acrylic acid 4-(2,4,6-trioxo-tetrahydro-pyrimidin-5- ylidenemethyl)phenyl ester, capable of multiple hydrogen bond formation with the 2,4- diaminopyrimidine. The recognition property of the respective polymers toward the template and other test compounds was evaluated by fluorescence. The results demonstrate that the polymers showed dose dependent enhancement of fluorescence emissions. In addition, the results also indicate that synthesized MIPs have higher 2,4-diaminopyrimidine binding ability as compared with corresponding non-imprinting polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∼105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries.