968 resultados para Antimicrobial effect
Resumo:
Background and purpose Efforts to prevent infection of arthroplasties, including the use of antibiotic-loaded bone cement, are not always successful. We investigated whether the incorporation of chitosan in gentamicin-loaded bone cement increases antibiotic release, and prevents bacterial adherence and biofilm formation by clinical isolates of Staphylococcus spp. In addition, we performed mechanical and degradation tests.
Resumo:
This study assessed the antimicrobial activity of a new bioactive glass-ceramic (Biosilicate (R)) against anaerobic, microaerophilic, and facultative anaerobic microorganisms. Evaluation of the antimicrobial activity was carried out by three methods, namely agar diffusion, direct contact, and minimal inhibitory concentration (MIC). For the agar diffusion technique, bio glass-ceramic activity was observed against various microorganisms, with inhibition haloes ranging from 9.0 +/- 1.0 to 22.3 +/- 2.1 mm. For the direct contact technique, Biosilicate (R) displayed activity against all the microorganisms, except for S. aureus. In the first 10 min of contact between the microorganisms and Biosilicate (R), there was a drastic reduction in the number of viable cells. Confirming the latter results, MIC showed that the Biosilicate (R) inhibited the growth of microorganisms, with variations between <= 2.5 and 20 mg/ml. The lowest MIC values (7.5 to <= 2.5 mg/ml) were obtained for oral microorganisms. In conclusion, Biosilicate (R) exhibits a wide spectrum of antimicrobial properties, including anaerobic bacteria.
Resumo:
Research has clarified the properties required for polymers that resist bacterial colonisation for use in medical devices. The increase in antibiotic-resistant microorganisms has prompted interest in the use of silver as an antimicrobial agent. Silver-based polymers can protect the inner and outer surfaces of devices against the attachment of microorganisms. Thus, this review focuses on the mechanisms of various silver forms as antimicrobial agents against different microorganisms and biofilms as well as the dissociation of silver ions and the resulting reduction in antimicrobial efficacy for medical devices. This work suggests that the characteristics of released silver ions depend on the nature of the silver antimicrobial used and the polymer matrix. In addition, the elementary silver, silver zeolite and silver nanoparticles, used in polymers or as coatings could be used as antimicrobial biomaterials for a variety of promising applications. (C) 2009 Elsevier B. V. and the International Society of Chemotherapy. All rights reserved.
Antimicrobial effect of human serum on oral Fusobacterium nucleatum isolates from humans and monkeys
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In some situations, endodontic infections do not respond to therapeutic protocol. In these cases, it is suggested the administration of an alternative intracanal medication that presents a wide spectrum of action and has an in-depth effect on the root canal system. The purpose of this study was to assess the antimicrobial action of ciprofloxacin, metronidazole and polyethylene glycol and natrosol vehicles with different associations and concentrations. The minimum inhibitory concentration (MIC) was determined by using the agar dilution method. The culture media (Muller-Hinton agar) were prepared containing antimicrobial agents at multiple two-fold dilutions of 0.25 to 16 mu g/mL, and with the vehicles at the concentrations of 50, 45, 40, 35, 30 and 25%. Twenty-three microbial strains were selected for the study. Metronidazole was not capable of eliminating any of the tested microorganisms. The association of ciprofloxacin with metronidazole resulted in a reduction of the MIC. The vehicle polyethylene glycol inhibited the growth of 100% of the tested strains, while natrosol inhibited 18% of the strains. Ciprofloxacin formulations with polyethylene glycol presented better effects than those of formulations to which metronidazole was added. It was possible to conclude that ciprofloxacin presented antimicrobial action against all tested bacteria] strains, and its association with metronidazole was synergic. The vehicle polyethylene glycol showed antimicrobial effect and the ciprofloxacin/polyethylene glycol association was the most effective combination for reducing the tested bacteria and yeasts.
Resumo:
Aim To evaluate the residual biovolume of live bacterial cells, the mean biofilm thickness and the substratum coverage found in mixed biofilms treated with different endodontic irrigant solutions. Methodology Twenty-five bovine dentine specimens were infected intraorally using a removable orthodontic device. Five samples were used for each irrigant solution: 2% chlorhexidine, 1% sodium hypochlorite (NaOCl), 10% citric acid, 17% EDTA and distilled water. The solutions were used for 5 min. The samples were stained using the Live/Dead technique and evaluated using a confocal microscope. Differences in the amount of total biovolume (mu m3), number of surviving cells (mu m3), mean biofilm thickness (mu m) and substratum coverage (%) of the treated biofilms were determined using nonparametric statistical tests (P < 0.05). Results Similar values of biovolume total, biovolume of live subpopulations and substratum coverage were found in 2% chlorhexidine, 10% citric acid, 17% EDTA and distilled water-treated biofilms (P > 0.05). The lower values of the studied parameters were found in 1% NaOCl-treated dentine (P < 0.05) with the exception of the mean biofilm height criteria that did not reveal significant differences amongst the irrigant solutions (P > 0.05). Conclusions One per cent sodium hypochlorite was the only irrigant that had a significant effect on biofilm viability and architecture.
Resumo:
Objectives. To evaluate if the incorporation of antimicrobial compounds to chelating agents or the use of chelating agents with antimicrobial activity as 7% maleic acid and peracetic acid show similar disinfection ability in comparison to conventional irrigants as sodium hypochlorite or iodine potassium iodide against biofilms developed on dentin. Materials and methods. The total bio-volume of live cells, the ratio of live cells and the substratum coverage of dentin infected intra-orally and treated with the irrigant solutions: MTAD, Qmix, Smear Clear, 7% maleic acid, 2% iodine potassium iodide, 4% peracetic acid, 2.5% and 5.25% sodium hypochlorite was measured by using confocal microscopy and the live/dead technique. Five samples were used for each irrigant solution. Results. Several endodontic irrigants containing antimicrobials as clorhexidine (Qmix), cetrimide (Smear Clear), maleic acid, iodine compounds or antibiotics (MTAD) lacked an effective antibiofilm activity when the dentin was infected intra-orally. The irrigant solutions 4% peracetic acid and 2.5–5.25% sodium hypochlorite decrease significantly the number of live bacteria in biofilms, providing also cleaner dentin surfaces (p < 0.05). Conclusions. Several chelating agents containing antimicrobials could not remove nor kill significantly biofilms developed on intra-orally infected dentin, with the exception of sodium hypochlorite and 4% peracetic acid. Dissolution ability is mandatory for an appropriate eradication of biofilms attached to dentin.
Resumo:
Submitted in partial fulfillment of the requirements for a Certificate in Orthodontics, Dept. of Orthodontics, University of Connecticut Health Center, 1993
Resumo:
Antibiotic resistance has emerged as a severe problem in hospital-acquired infectious disease. The Gram-negative bacterium Pseudomonas aeruginosa is found to cause secondary infection in immune-compromised patients. Unfortunately, it is resistant to virtually all β-lactam antibiotics such as penicillin, cephalosporin and others. Researchers are seeking for new compounds to treat several antibiotic-resistant bacterial strains. Artemisia plant extracts are commonly used for their therapeutic properties by natives throughout dry regions of North and South America. Here, they are administered as an alternative medicine for stomach problems and other complex health issues. In this study, the antimicrobial effects of plant extracts from several Artemisia species as well as compounds dehydroleucodine and dehydroparishin-B (sesquiterpenes derived specifically from A. douglasiana) were used as treatments against the pathogenicity effects of P. aeruginosa. Results showed that both compounds effectively inhibit the secretion of LasB elastase, biofilm formation and type III secretion, but fail to control LasA protease. This is a significant observation because these virulent factors are crucial in establishing P.aeruginosa infection. The results from this study signify a plausible role for future alternative therapy in the biomedical field, which recommends DhL and DhP can be studied as key compounds against bacterial infections of Pseudomonas aeruginosa.
Resumo:
International audience
Resumo:
Dissertação de mestrado em Bioquímica, apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2016.
Resumo:
Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.
Resumo:
The aim of the present study was to evaluate the antimicrobial effect of antimicrobial photodynamic therapy (aPDT) in alveolar treatment of areas with induced periodontitis. Thirty male Wistar rats were subjected to ligature-induced periodontal disease (PD) in the first left inferior molars, while the right side molars did not receive ligatures. After 7 days of PD evolution, ligatures were removed from the left side, and the first left and right mandibular molars were extracted. Afterwards, animals were divided into groups according to the following treatments: control (C)-no treatment; mechanical debridement (MD)-mechanical debridement and irrigation with saline solution; and aPDT-mechanical debridement, irrigation with toluidine blue O (TBO), and 1 min of laser irradiation (GaAlAs, 660 nm, 30 mW, 32 J/cm2, 60 s). Ligatures were removed and samples of the alveolar content after extraction and after each treatment were collected for microbial processing by real-time polymerase chain reaction with specific primers for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. Data were submitted to statistical analysis by multiple comparison tests (McNemar test; p < 0.05). T. denticola was not found in the collected samples. A. actinomycetemcomitans and P. gingivalis were found in ligature samples. Tooth socket samples without periodontitis induction presented lesser microbial charge than samples with induced periodontitis (p < 0.05). aPDT significantly reduced A. actinomycetemcomitans levels on the left side (p < 0.05). It was concluded that aPDT was an effective antimicrobial treatment for tooth sockets in areas affected by induced periodontitis. © 2013 Springer-Verlag London.