1000 resultados para Antihyperglycemic effect


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To investigate the effect of Astragalus membranaceus (Fisch.) Bunge. extract (AMBE) on streptozotocin-induced diabetic rats. Methods: The aqueous extract of AMB was obtained by steeping the dried Astragalus membranaceus (Fisch.) Bunge. in water at 60 oC three times, each for 1 h, before first drying in an oven at 100 oC and then freeze-drying the last extract thus obtained. Diabete model rats was induced by a single intraperitoneal injection of a freshly prepared solution of streptozotocin (50 mg/kg). The rats were randomly divided into 6 groups of ten rats each: negative control group, normal control group, reference group (glibenclamide1 mg/kgbody weight) as well as AMB extract groups, namely, 40, 80 and 160 mg/kg body weight. Antihyperglycemic effect was measured by blood glucose and plasma insulin levels. Oxidative stress was evaluated in liver and kidney by antioxidant markers, viz, lipidperoxidation (LPO), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT), while blood serum levels of creatinine and urea were also determined in both diabetic control and treated rats. Results: Compared with diabetic rats, oral administration of AMBE at a concentration of 160 mg/kg daily for 30 days showed a significant decrease in fasting blood glucose (109.438 ± 3.52, p < 0.05) and increased insulin level (13.96 ± 0.74, p < 0.05). Furthermore, it significantly reduced biochemical parameters (serum creatinine, 0.86 ± 0.29, p < 0.05) and serum urea (45.14 ± 1.79, p < 0.05). The treatment also resulted in significant increase in GSH (49.21 ± 2.59, p < 0.05), GPx (11.96 ± 1.16, p < 0.05), SOD (14.13 ± 0.49, p < 0.05), CAT (83.25 ± 3.14, p < 0.05) level in the liver and kidney of diabetic rats. Conclusion: The results suggest that AMBE may effectively normalize impaired antioxidant status in streptozotocin-induced diabetes in a dose-dependent manner. AMBE has a protective effect against lipid peroxidation by scavenging free radicals and is thus capable of reducing the risk of diabetic complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The study investigated the in vivo antioxidant activity and the in vitro radical scavenging capacity of the Combretum lanceolatum Pohl (Combretaceae) flowers ethanolic extract (ClEtOH) in streptozotocin-diabetic rats. Place and Duration of Study: Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Brazil; between February 2012 and December 2012. Methodology: Male Wistar rats were divided into four groups: Normal rats treated with water/vehicle (N); diabetic rats treated with water (DC); diabetic rats treated with 250 mg/kg (DT250) or with 500mg/kg (DT500) of ClEtOH. After 21 days of treatment, liver samples were used for the analysis of the oxidative stress biomarkers and activity of antioxidant enzymes. In vitro radical scavenger capacity was investigated by the following methods: DPPH radical scavenging, ABTS radical cation decolorization and crocin bleaching assays. Results: Significant oxidative stress was observed in liver of DC, since the malondialdehyde (MDA, biomarker of lipoperoxidation) levels were increased in comparison with N. Increased activities of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were also observed in DC, which could represent a compensatory mechanism against oxidative stress. Glutathione (GSH) levels were lower and similar between N and DC. The MDA levels were significantly decreased in liver of rats from DT250 and DT500, reaching levels similar those of N, suggesting that ClEtOH prevented lipoperoxidation. The treatment of diabetic rats with ClEtOH also increased the GSH levels, as well as increased the GSH-Px activity, and did not change the SOD activity. The results of in vitro radical scavenging capacity indicated that ClEtOH is highly active. Conclusion: These findings indicate that ClEtOH has antioxidant properties in liver of diabetic rats, decreasing lipoperoxidation and increasing the endogenous antioxidant responses. Both the antihyperglycemic effect and the capacity to scavenge free radicals may be related to the antioxidant activity of ClEtOH in diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ethnobotanical survey of medicinal plants was carried out in the Central Middle Atlas in the years 2013 and 2014 to establish the catalog of medicinal plants used in traditional medicine in the treatment of diabetes. Thus, 1560 people were interviewed, using questionnaires. The latter enabled us to gather information on traditional healing practices of the local population including scientific name, French name, vernacular name, plant parts used , therapeutic indications , revenues and mode of administration. The results show that 76 medicinal species were inventoried in the study area. These plant species are included into 67 genus and 40 families. The most represented families are: Lamiaceae (12 species), Asteraceae and Brassicaceae species with 14 each. Of 76 medicinal species found in the region, four species are reported for the first time in the traditional treatment of diabetes in Morocco. They are Pistacia atlantica, Ptychotis verticillata, Anacyclus pyrethrum, Alyssum spinosum, Cistus albidus, Juniperus thurifera, Ephedra nebrodensis, Thymus algeriensis, Th. munbyanus, Th. zygis, Abelmoschus esculentus, Fraxinus augustifolia, Sorghum vulgare and, Eriobotrya japonica. The leaves are the most used organs (38%). The decoction is the dominant mode of preparation (50%) and administration is mostly for oral use (97%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis Entitled Neuronal degeneration in streptozotocin induced diabetic rats: effect of aegle marmelose and pyridoxine in pancreatic B cell proliferation and neuronal survival. Diabetes mellitus, a chronic metabolic disorder results in neurological dysfunctions and structural changes in the CNS. Antioxidant therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. Our results showed regional variation and imbalance in the expression pattern of dopaminergic receptor subtypes in diabetes and its role in imbalanced insulin signaling and glucose regulation. Disrupted dopaminergic signaling and increased hyperglycemic stress in diabetes contributed to the neuronal loss. Neuronal loss in diabetic rats mediated through the expression of pattern of GLUT-3, CREB, IGF-1, Akt-1, NF,B, second messengers- cAMP, cGMP, IP3 and activation of apoptotic factors factors- TNF-a,caspase-8. Disrupted dopaminergic receptor expressions and its signaling in pancreas contributed defective insulin secretion in diabetes. Activation of apoptotic factors- TNF- a,caspase-8 and defective functioning of neuronal survival factors, disrupted second messenger signaling modulated neuronal viability in diabetes. Hyperglycemic stress activated the expression of TNF-a,caspase-8, BAX and differential expression of anti oxidant enzymes- SOD and GPx in liver lead to apoptosis. Treatment of diabetic rats with insulin, Aegle marmelose and pyridoxine significantly reversed the altered dopaminergic neurotransmission, GLUT3, GLUT2, IGF-1 and second messenger signaling. Antihyperglycemic and antioxidant activity of Aegle marmelose and pyridoxine enhanced pancreatic B cell proliferation, increased insulin synthesis and secretion in diabetic rats. Thus our results conclude the neuroprotective and regenerating ability of Aegle marmelose and pyridoxine which in turn has a novel therapeutic role in the management of diabetes.