948 resultados para Antigens, CD45
Resumo:
OBJECTIVES: To evaluate the immune reconstitution in HIV-1-infected children in whom highly active antiretroviral therapy (HAART) controlled viral replication and to assess the existence of a relation between the magnitude of this restoration and age. METHODS: All HIV-1-infected children in whom a new HAART decreased plasma viral load below 400 copies/ml after 3 months of therapy were prospectively enrolled in a study of their immune reconstitution. Viral load, lymphocyte phenotyping, determination of CD4+ and CD8+ T cell receptor repertoires and proliferative responses to mitogens and recall antigens were assessed every 3 months during 1 year. RESULTS: Nineteen children were evaluated. Naive and memory CD4+ percentages were already significantly increased after 3 months of HAART. In contrast to memory CD4+ percentages, naive CD4+ percentages continued to rise until 12 months. Age at baseline was inversely correlated with the magnitude of the rise in naive CD4+ cells after 3, 6 and 9 months of therapy but not after 12 months. Although memory and activated CD8+ cells were already decreasing after 3 months, abnormalities of the CD8 T cell receptor repertoire and activation of CD8+ cells persisted at 1 year. HAART increased the response to mitogens as early as 3 months after starting therapy. CONCLUSIONS: In children the recovery of naive CD4+ cells occurs more rapidly if treatment is started at a younger age, but after 1 year of viral replication control, patients of all ages have achieved the same level of restoration. Markers of chronic activation in CD8+ cells persist after 1 year of HAART.
Resumo:
OBJECTIVE: To study the nature of multinucleated and mononuclear cells from peripheral giant cell granuloma (PGCG). MATERIALS AND METHODS: Formalin-fixed, paraffin-embedded sections of 40 cases of PGCG were immunohistochemically stained for vimentin, alpha I-antichymotrypsin, CD68, S-100 protein, lysozyme, leucocyte common antigen (LCA), factor VIII-related antigen and muscle cell actin. Six cases of PGCG were also studied by transmission electron microscopy. RESULTS: Vimentin, alpha I-antichymotrypsin and CD68 were expressed in both the mononuclear and multinucleated giant cells. Dendritic mononuclear cells, positive for S-100 protein, were noted in 67.5% of the lesions, whereas lysozyme and leucocyte common antigen were detected in occasional mononuclear cells. Ultrastructural examination showed mononuclear cells with signs of phagocytosis and sometimes interdigitations with similar cells. Others presented non-specific characteristics and the third type exhibited cytoplasmic processes and occasional Birbeck granules. Some multinucleated giant cells showed oval nuclei, abundant mitochondria and granular endoplasmic reticulum whereas others presented with irregular nuclei and a great number of cytoplasmic vacuoles. CONCLUSIONS: Immunohistochemical and ultrastructural results suggest that PGCGs of the jaws are composed mainly of cells of the mononuclear phagocyte system and that Langerhans cells are present in two thirds of the lesions.
Resumo:
Cellular immune responses to Anisakis simplex L3 antigens were investigated in BALB/c mice injected subcutaneously with a homologous crude extract (CE). Popliteal lymph nodes (PLN) were found to be increased in size and weight after A. simplex CE footpad injection. The effects of A. simplex CE in vitro proliferation were assayed with non-fractionated PLN cells or nylon-wool purified T cells derived from pooled lymph node cells of mice subcutaneously injected with CE. Spleen cells from immunized animals (antigen alone, or larva alone, or antigen plus larva) were studied by flow cytometry. The immunization induced a high proportion of CD4 + and TCR alpha beta + T cells. The number of B cells (CD45 + and TCR alpha beta-) in pre-immunized and infected mice was lower than that observed in animals subjected to infection only. The number of CD4 + T cells increased in the infected and in the pre-immunized and infected mice. In the latter, a decrease of CD8a + T cells was noted. The greatest increase in CD8a+ and TCR alpha beta- T cells was found in mice that had been subjected to infection only. Histological analysis showed that the most prominent lesions were gastric and intestinal in animals infected orally with one larva.
Resumo:
Osteophytes form through the process of chondroid metamorphosis of fibrous tissue followed by endochondral ossification. Osteophytes have been found to consist of three different mesenchymal tissue regions including endochondral bone formation within cartilage residues, intra-membranous bone formation within fibrous tissue and bone formation within bone marrow spaces. All these features provide evidence of mesenchymal stem cells (MSC) involvement in osteophyte formation; nevertheless, it remains to be characterised. MSC from numerous mesenchymal tissues have been isolated but bone marrow remains the “ideal” due to the ease of ex vivo expansion and multilineage potential. However, the bone marrow stroma has a relatively low number of MSC, something that necessitates the need for long-term culture and extensive population doublings in order to obtain a sufficient number of cells for therapeutic applications. MSC in vitro have limited proliferative capacity and extensive passaging compromises differentiation potential. To overcome this barrier, tissue derived MSC are of strong interest for extensive study and characterisation, with a focus on their potential application in therapeutic tissue regeneration. To date, no MSC type cell has been isolated from osteophyte tissue, despite this tissue exhibiting all the hallmark features of a regenerative tissue. Therefore, this study aimed to isolate and characterise cells from osteophyte tissues in relation to their phenotype, differentiation potential, immuno-modulatory properties, proliferation, cellular ageing, longevity and chondrogenesis in in vitro defect model in comparison to patient matched bone marrow stromal cells (bMSC). Osteophyte derived cells were isolated from osteophyte tissue samples collected during knee replacement surgery. These cells were characterised by the expression of cell surface antigens, differentiation potential into mesenchymal lineages, growth kinetics and modulation of allo-immune responses. Multipotential stem cells were identified from all osteophyte samples namely osteophyte derived mesenchymal stem cells (oMSC). Extensively expanded cell cultures (passage 4 and 9 respectively) were used to confirm cytogenetic stability and study signs of cellular aging, telomere length and telomerase activity. Cultured cells at passage 4 were used to determine 84 pathway focused stem cell related gene expression profile. Micro mass pellets were cultured in chondrogenic differentiation media for 21 days for phenotypic and chondrogenic related gene expression. Secondly, cell pellets differentiated overnight were placed into articular cartilage defects and cultured for further 21 days in control medium and chondrogenic medium to study chondrogenesis and cell behaviour. The surface antigen expression of oMSC was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing those related to adhesion (CD29, CD166, CD44) and stem cells (CD90, CD105, CD73). The proliferation capacity of oMSC in culture was superior to that of bMSC, and they readily differentiated into tissues of the mesenchymal lineages. oMSC also demonstrated the ability to suppress allogeneic T-cell proliferation, which was associated with the expression of tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO). Cellular aging was more prominent in late passage bMSC than in oMSC. oMSC had longer telomere length in late passages compared with bMSC, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSC and not in bMSC. In osteophyte tissues telomerase positive cells were found to be located peri vascularly and were Stro-1 positive. Eighty-four pathway-focused genes were investigated and only five genes (APC, CCND2, GJB2, NCAM and BMP2) were differentially expressed between bMSC and oMSC. Chondrogenically induced micro mass pellets of oMSC showed higher staining intensity for proteoglycans, aggrecan and collagen II. Differential expression of chondrogenic related genes showed up regulation of Aggrecan and Sox 9 in oMSC and collagen II in bMSC. The in vitro defect models of oMSC in control medium showed rounded and aggregated cells staining positively for proteoglycan and presence of some extracellular matrix. In contrast, defects with bMSC showed fragmentation and loss of cells, fibroblast-like cell morphology staining positively for proteoglycans. For defects maintained in chondrogenic medium, rounded, aggregated and proteoglycan positive cells were found in both oMSC and bMSC cultures. Extracellular matrix and cellular integration into newly formed matrix was evident only in oMSC defects. For analysis of chondrocyte hypertrophy, strong expression of type X collagen could be noticed in the pellet cultures and transplanted bMSC. In summary, this study demonstrated that osteophyte derived cells had similar properties to mesenchymal stem cells in the expression of antigen phenotype, differential potential and suppression of allo-immune response. Furthermore, when compared to bMSC, oMSC maintained a higher proliferative capacity due to a retained level of telomerase activity in vitro, which may account for the relatively longer telomeres delaying growth arrest by replicative senescence compared with bMSC. oMSC behaviour in defects supported chondrogenesis which implies that cells derived from regenerative tissue can be an alternative source of stem cells and have a potential clinical application for therapeutic stem cell based tissue regeneration.
Resumo:
Background Human immunodeficiency virus type 1 (HIV-1) has infected more than 40 million people worldwide, mainly in sub-Saharan Africa. The high prevalence of HIV-1 subtype C in southern Africa necessitates the development of cheap, effective vaccines. One means of production is the use of plants, for which a number of different techniques have been successfully developed. HIV-1 Pr55Gag is a promising HIV-1 vaccine candidate: we compared the expression of this and a truncated Gag (p17/p24) and the p24 capsid subunit in Nicotiana spp. using transgenic plants and transient expression via Agrobacterium tumefaciens and recombinant tobamovirus vectors. We also investigated the influence of subcellular localisation of recombinant protein to the chloroplast and the endoplasmic reticulum (ER) on protein yield. We partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. Results Both transient and transgenic expression of the HIV antigens were successful, although expression of Pr55Gag was low in all systems; however, the Agrobacterium-mediated transient expression of p24 and p17/p24 yielded best, to more than 1 mg p24/kg fresh weight. Chloroplast targeted protein levels were highest in transient and transgenic expression of p24 and p17/p24. The transiently-expressed p17/p24 was not immunogenic in mice as a homologous vaccine, but it significantly boosted a humoral and T cell immune response primed by a gag DNA vaccine, pTHGagC. Conclusion Transient agroinfiltration was best for expression of all of the recombinant proteins tested, and p24 and p17/p24 were expressed at much higher levels than Pr55Gag. Our results highlight the usefulness of plastid signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The p17/p24 protein effectively boosted T cell and humoral responses in mice primed by the DNA vaccine pTHGagC, showing that this plant-produced protein has potential for use as a vaccine.
Resumo:
Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS pathogenesis. The Protein tyrosine phosphatase receptor type C gene (PTPRC) encodes the T-cell receptor CD45. Variations within PTPRC have been previously associated with diseases of autoimmune origin such as type 1 diabetes mellitus and Graves' disease. We set out to investigate two variants within the PTPRC gene, C77G and C772T in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We employed high resolution melt analysis (HRM) and restriction length polymorphism (RFLP) techniques to determine genotypic and allelic frequencies. Our study found no significant difference between frequencies for PTPRC C77G by either genotype (Χ2 = 0.65, P = 0.72) or allele (Χ2 = 0.48, P = 0.49). Similarly, we did not find evidence to suggest an association between PTPRC C772T by genotype (Χ2 = 1.06, P = 0.59) or allele (Χ2 = 0.20, P = 0.66). Linkage disequilibrium (LD) analysis showed strong linkage disequilibrium between the two tested markers (D' = 0.9970, SD = 0.0385). This study reveals no evidence to suggest that these markers are associated with MS in the tested Australian Caucasian population. Although the PTPRC gene has a significant role in regulating CD4+ and CD8+ autoreactive T-cells, interferon-beta responsiveness, and potentially other important processes, our study does not support a role for the two tested variants of this gene in MS susceptibility in the Australian population.
Resumo:
This study aimed to identify new peptide antigens from Chlamydia (C.) trachomatis in a proof of concept approach which could be used to develop an epitope-based serological diagnostic for C. trachomatis related infertility in women. A bioinformatics analysis was conducted examining several immunodominant proteins from C. trachomatis to identify predicted immunoglobulin epitopes unique to C. trachomatis. A peptide array of these epitopes was screened against participant sera. The participants (all female) were categorized into the following cohorts based on their infection and gynecological history; acute (single treated infection with C. trachomatis), multiple (more than one C. trachomatis infection, all treated), sequelae (PID or tubal infertility with a history of C. trachomatis infection), and infertile (no history of C. trachomatis infection and no detected tubal damage). The bioinformatics strategy identified several promising epitopes. Participants who reacted positively in the peptide 11 ELISA were found to have an increased likelihood of being in the sequelae cohort compared to the infertile cohort with an odds ratio of 16.3 (95% c.i. 1.65 – 160), with 95% specificity and 46% sensitivity (0.19-0.74). The peptide 11 ELISA has the potential to be further developed as a screening tool for use during the early IVF work up and provides proof of concept that there may be further peptide antigens which could be identified using bioinformatics and screening approaches.
Resumo:
Antibodies can play a protective but non-essential role in natural chlamydial infections dependent on antigen specificity and antibody isotype. IgG is the dominant antibody in both male and female reproductive tract mucosal secretions, and is bi-directionally trafficked across epithelia by the neonatal Fc receptor (FcRn). Using physiologically relevant pH-polarized epididymal epithelia grown on Transwells®, IgG specifically targeting an extracellular chlamydial antigen; the Major Outer Membrane Protein (MOMP), enhanced uptake and translocation of infection at pH 6-6.5 but not at neutral pH. This was dependent on FcRn expression. Conversely, FcRn-mediated transport of IgG targeting the intracellular chlamydial inclusion membrane protein A (IncA), induced aberrant inclusion morphology, recruited autophagic proteins independent of lysosomes, and significantly reduced infection. Challenge of female mice with MOMP-specific IgG-opsonized C. muridarum delayed infection clearance but exacerbated oviduct occlusion. In male mice, MOMP-IgG elicited by immunization afforded no protection against testicular chlamydial infection, whereas; the transcytosis of IncA-IgG significantly reduced testicular chlamydial burden. Together these data show that the protective and pathological effects of IgG are dependent on FcRn-mediated transport as well as the specificity of IgG for intracellular or extracellular antigens.
Resumo:
The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.
Resumo:
To identify specific markers of rectovaginal endometriotic nodule vasculature, highly enriched preparations of vascular endothelial cells and pericytes were obtained from endometriotic nodules and control endometrial and myometrial tissue by laser capture microdissection (LCM), and gene expression profiles were screened by microarray analysis. Of the 18 400 transcripts on the arrays, 734 were significantly overexpressed in vessels from fibromuscular tissue and 923 in vessels from stromal tissue of endometriotic nodules, compared with vessels dissected from control tissues. The most frequently expressed transcripts included known endothelial cell-associated genes, as well as transcripts with little or no previous association with vascular cells. The higher expression in blood vessels was further corroborated by immunohistochemical staining of six potential markers, five of which showed strong expression in pericytes. The most promising marker was matrix Gla protein, which was found to be present in both glandular epithelial cells and vascular endothelial cells of endometriotic lesions, although it was barely expressed at all in normal endometrium. LCM, combined with microarray analysis, constitutes a powerful tool for mapping the transcriptome of vascular cells. After immunohistochemical validation, markers of vascular endothelial and perivascular cells from endometriotic nodules could be identified, which may provide targets to improve early diagnosis or to selectively deliver therapeutic agents.
Resumo:
Seven novel antigens of Mycobacterium tuberculosis, which had previously been identified based on reactivity to sera from patients with tuberculosis, were characterized. Nucleotide sequence analysis of the genes encoding these seven antigens identified one of them as the FtsH and a second as the aminoimidazole ribotide synthase of M. tuberculosis. Antisera raised to the recombinant forms of each of these seven antigens were used to study the distribution of these proteins within mycobacterial species as well as to determine their subcellular localization and hydrophobicity. Four of the seven antigens were conserved only among pathogenic strains of mycobacteria. Of the seven proteins studied, FtsH and a second protein of unknown identity were localized in membranes. Two were cytosolic, while two others, which had a high proline content, were tightly associated with the cell wall. One protein was secreted. This secreted protein could be identified by serum from a majority of tuberculosis patients but not BCG-vaccinated individuals, suggesting its potential use in the immunodiagnosis of tuberculosis.