899 resultados para Antibacterial compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of multidrug-resistant bacterial infections in both the clinical setting and the community has created an environment in which the development of novel antibacterial compounds is necessary to keep dangerous infections at bay. While the derivatization of existing antibiotics by pharmaceutical companies has so far been successful at achieving this end, this strategy is short-term, and the discovery of antibacterials with novel scaffolds would be a greater contribution to the fight of multidrug-resistant infections. Described herein is the application of both target-based and whole cell screening strategies to identify novel antibacterial compounds. In a target-based approach, we sought small-molecule disruptors of the MazEF toxin-antitoxin protein complex. A lack of facile, continuous assays for this target required the development of a fluorometric assay for MazF ribonuclease activity. This assay was employed to further characterize the activity of the MazF enzyme and was used in a screening effort to identify disruptors of the MazEF complex. In addition, by employing a whole cell screening approach, we identified two compounds with potent antibacterial activity. Efforts to characterize the in vitro antibacterial activities displayed by these compounds and to identify their modes of action are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracts of 13 Brazilian medicinal plants were screened for their antimicrobial activity against bacteria and yeasts. Of these, 10 plant extracts showed varied levels of antibacterial activity. Piper regnellii presented a good activity against Staphylococus aureus and Bacillus subtilis, a moderate activity on Pseudomonas aeruginosa, and a weak activity against Escherichia coli. Punica granatum showed good activity on S. aureus and was inactive against the other standard strains. Eugenia uniflora presented moderate activity on both S. aureus and E. coli. Psidium guajava,Tanacetum vulgare, Arctium lappa, Mikania glomerata, Sambucus canadensis, Plantago major and Erythrina speciosa presented some degree of antibacterial activity. Spilanthes acmella, Lippia alba, and Achillea millefolium were considered inactive. Five of the plant extracts presented compounds with Rf values similar to the antibacterial compounds visible on bioautogram. Of these, three plants belong to the Asteraceae family. This may mean that the same compounds are responsible for the antibacterial activity in these plants. Anticandidal activity was detected in nine plant extracts (P. guajava, E. uniflora, P. granatum, A. lappa, T. vulgare, M. glomerata, L. alba, P. regnellii, and P. major). The results might explain the ethnobotanical use of the studied species for the treatment of various infectious diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tämä raportti on osa BIOTULI-projektia, jossa tutkitaan biojalostamoiden uusia tuotteita ja liiketoimintamalleja. Raportin tavoitteena on selvittää, millaisilla liiketoimintamalleilla BIOTULI-projektissa löytyneitä potentiaalisia bioliiketoimintamahdollisuuksia pystytään hyödyntämään pk-yrityksen näkökulmasta. Tavoitteena on myös tutkia millaisen toimitusketjun liiketoimintamalli vaatii, ja millä edellytyksillä sen toteuttaminen on kannattavaa. Raportissa tarkastellaan torrefioinnin ja lämmöntuotannon yhdistämistä sekä BIOTULI-projektissa kehitetyn uuden erottelumenetelmän hyödyntämistä biohajoavan desinfiointiaineen valmistuksessa. Selvitystyö toteutettiin asiantuntijahaastatteluiden ja kirjallisuuskatsauksen perusteella. Molemmille casetapauksille muodostettiin liiketoimintamalli sekä arvioitiin sen toteutettavuutta ja kehitysnäkymiä. Torrefioinnin ja lämmöntuotannon yhdistäminen ei tehdyn analyysin perusteella ole tällä hetkellä kannattavaa, mutta muutokset markkinatilanteessa voivat muuttaa tilannetta tulevaisuudessa. Biohajoavan desinfiointiaineen valmistuksessa on potentiaalia kannattavaan liiketoimintaan, mutta tutkimus on vielä kesken, joten tarkkaa liiketoiminnan tai sen kannattavuuden arviointia ei vielä voi tehdä. Työn tuloksia voi käyttää pohjana tarkemmille kannattavuusarvioille.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beta-Lactamases are widespread in the bacterial world, where they are responsible for resistance to penicillins, cephalosporins, and related compounds, currently the most widely used antibacterial agents. Detailed structural and mechanistic understanding of these enzymes can be expected to guide the design of new antibacterial compounds resistant to their action. A number of high-resolution structures are available for class A beta-lactamases, whose catalytic mechanism involves the acylation of a serine residue at the active site. The identity of the general base which participates in the activation of this serine residue during catalysis has been the subject of controversy, both a lysine residue and a glutamic acid residue having been proposed as candidates for this role. We have used the pH dependence of chemical modification of epsilon-amino groups by 2,4,6,-trinitrobenzenesulfonate and the pH dependence of the epsilon-methylene 1H and 13C chemical shifts (in enzyme selectively labeled with [epsilon-13C]lysine) to estimate the pKa of the relevant lysine residue, lysine-73, of TEM-1 beta-lactamase. Both methods show that the pKa of this residue is > 10, making it very unlikely that this residue could act as a proton acceptor in catalysis. An alternative mechanism in which this role is performed by glutamate-166 through an intervening water molecule is described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestistopoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia colitopoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New antibacterial compounds, preferentially exploiting novel cellular targets, are urgently needed to fight the increasing resistance of pathogens against conventional antibiotics. Here we demonstrate that Carolacton, a myxobacterial secondary metabolite previously shown to damage Streptococcus mutans biofilms, inhibits planktonic growth of Streptococcus pneumoniae TIGR4 and multidrug-resistant clinical isolates of serotype 19A at nanomolar concentrations. A Carolacton diastereomer is inactive in both streptococci, indicating a highly specific interaction with a conserved cellular target. S. mutans requires the eukaryotic-like serine/threonine protein kinase PknB and the cysteine metabolism regulator CysR for susceptibility to Carolacton, whereas their homologues are not needed in S. pneumoniae, suggesting a specific function for S. mutans biofilms only. A bactericidal effect of Carolacton was observed for S. pneumoniae TIGR4, with a reduction of cell numbers by 3 log units. The clinical pneumonia isolate Sp49 showed immediate growth arrest and cell lysis, suggesting a bacteriolytic effect of Carolacton. Carolacton treatment caused a reduction in membrane potential, but not membrane integrity, and transcriptome analysis revealed compensatory reactions of the cell. Our data show that Carolacton might have potential for treating pneumococcal infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lack of a high-resolution structure for the bacterial helicase-primase complex and the fragmented structural information for the individual proteins have been hindering our detailed understanding of this crucial binary protein interaction. Two new structures for the helicase-interacting domain of the bacterial primases from Escherichia coli and Bacillus stearothermophilus have recently been solved and both revealed a unique and surprising structural similarity to the amino-terminal domain of the helicase itself. In this minireview, the current data are discussed and important new structural and functional aspects of the helicase-primase interaction are highlighted. An attractive structural model with direct biological significance for the function of this complex and also for the development of new antibacterial compounds is examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)