999 resultados para Anti-stokes Fluorescence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering (CARS) microscopy with the combining of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labeling. The CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscopy. In this paper, we calculated the propagation of CARS signals by using the wave equation in medium and the slowly varying envelope approximation (SVEA), and find that the intensity angular distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscopy (e.g.. the point spread function) will fail to descript the imaging properties of CARS microscopy. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low temperature (10 K) strong anti-Stokes photoluminescence (ASPL) of ZnO microcrystal excited by low power cw 532 nm laser is reported here. Energy upconversion of 1.1 eV is obtained in our experiment with no conventional nonlinear effect. Through the study of the normal photoluminescence and temperature dependence of ASPL we conclude that the green band luminescence in ZnO is related to deep donor to valance band transition. Using the two-step two-photon absorption model, we provide a plausible mechanism leading to the ASPL phenomenon in our experiment. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a simple approach for inline holographic coherent anti-Stokes Raman scattering (CARS) microscopy, in which a layer of uniform nonlinear medium is placed in front of a specimen to be imaged. The reference wave created by four-wave mixing in the nonlinear medium can interfere with the CARS signal generated in the specimen to result in an inline hologram. We experimentally and theoretically investigate the inline CARS holography and show that it has chemical selectivity and can allow for three-dimensional imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm-1 (A1g), 197 cm-1 (Eg), 398 cm-1 (B1g), 515 cm-1 (A1g), and 640 cm-1 (Eg) assigned to anatase which were replaced by bands at 143 cm-1 (B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal anti-Stokes Raman scattering (AASR) was unambiguously observed in carbon nanotubes (CNT's). In contrast to traditional Raman scattering theory, the absolute value of the Raman frequency of the anti-Stokes peak is not the same as that of the corresponding Stokes peak. It was demonstrated that AASR scattering originates from the unique nanoscale cylindrical structure of CNT's that can be considered naturally as a graphite structure with an intrinsic defect from its rolling. The double-resonance Raman scattering theory was applied to interpret the scattering mechanism of the AASR phenomenon successfully and quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stokes and anti-Stokes SERRS intensity fluctuations were observed from a roughened silver electrode immersed in diluted solutions of Brilliant Green (BG), a behaviour linked to single-molecule events. The distributions of the anti-Stokes to Stokes ratios were obtained and their shape showed a strong dependence on the applied potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural changes in the retinal chromophore during the formation of the bathorhodopsin intermediate (bathoRT) in the room-temperature rhodopsin (RhRT) photosequence (i.e., vision) are examined using picosecond time-resolved coherent anti-Stokes Raman scattering. Specifically, the retinal structure assignable to bathoRT following 8-ps excitation of RhRT is measured via vibrational Raman spectroscopy at a 200-ps time delay where the only intermediate present is bathoRT. Significant differences are observed between the C=C stretching frequencies of the retinal chromophore at low temperature where bathorhodopsin is stabilized and at room temperature where bathorhodopsin is a transient species in the RhRT photosequence. These vibrational data are discussed in terms of the formation of bathoRT, an important step in the energy storage/transduction mechanism of RhRT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im ersten Teil der Arbeit wurde die Abstandsabhängigkeit des elektronischen Kopplungsverhaltens für eine homologe Reihe von Perylendiimid-Dimeren (PDI-(Ph)x-PDI, x=0-3) mithilfe der Einzelmolekülspektroskopie bei tiefen Temperaturen untersucht. Während für große Abstände überwiegend „schwache“ Kopplung dominierte, wurde für den kleinsten Abstand „starke“ Kopplung gefunden. Im Gegensatz dazu zeigte das p-Phenylen-verbrückte Dimer (x=1) in Abhängigkeit vom untersuchten Molekül ein für beide Grenzfälle typisches Verhalten. Hier entscheidet die Größe der Kopplungsstärke im Vergleich zum statischen Energieunterschied, welcher Kopplungsmechanismus vorliegt. Die homologe Reihe ermöglichte zusätzlich die quantitative Untersuchung der Abstandsabhängigkeit der elektronischen Kopplungsstärke im Grenzfall „schwacher“ Kopplung. Sie konnte direkt aus der zugrunde liegenden Energietransferdynamik ermittelt werden. Der Vergleich mit quantenchemisch berechneten Werten lieferte eine gute Übereinstimmung. Die Abweichung betrug lediglich 20%.rnIm zweiten Teil der Arbeit wurde die thermische Besetzung der Schwingungszustände einzelner Terrylen-Moleküle untersucht. Im elektronischen Grundzustand konnte sie mithilfe von anti-Stokes-Fluoreszenz infolge von „Hot Band“ Absorption nachgewiesen werden. Darüber hinaus wurde Fluoreszenz aus höheren Schwingungszuständen des elektronisch angeregten Zustandes gefunden, die auf „Hot Band“ Emission infolge von thermischer Besetzung zurückgeführt werden konnte. Durch die Kombination von Emissions- und Anregungsspektroskopie konnte die Temperaturabhängigkeit beider Prozesse im Temperaturbereich von 209-311 K untersucht werden. Sie folgt der Boltzmann-Statistik, was eine Temperaturmessung mit einzelnen Molekülen ermöglicht. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review progress on laser cooling of solids. The general process that enables cooling to occur is based on anti-Stokes fluorescence. Candidate materials for laser cooling are discussed, including gases, dyes, crystals, semiconductors, and ionically doped glasses. Cooling processes and necessary conditions for cooling are outlined, and general thermodynamic limitations are discussed. This is followed by a more detailed discussion of one specific material, ytterbium-doped ZBLAN, with consideration given to optimization of the laser cooling process and applications. (C) 2003 Optical Society of America.