954 resultados para Anti-fungal activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaves of Piper aduncum accumulate the anti-fungal chromenes methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate (2). The enzymatic formation of 2 from dimethylallyl diphosphate and I was investigated using cell-free extracts of the title plant. An HPLC assay for the prenylation reaction was developed and the enzyme activity measured in the protein extracts. The prenyltransferase that catalyses the transfer of the dimethylallyl group to C-2' of 1 was soluble and required dimethylallyl diphosphate as the prenyl donor. In the leaves, the biosynthesis of the prenylated chromene 2 was time-regulated and prenyltransferase activity depended upon circadian variation. Preliminary characterisation and purification experiments on the prenyltransferase from P. aduncum have been performed. Copyright (C) 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro anti-fungal activity of leaf and stem bark of Daniella oliveri Rolfe was investigated against selected yeasts and moulds including dermatophytes. Water and methanol were used to extract the powdered leaf and stem bark using cold infusion. Antimicrobial activity was assessed by agar-well diffusion. Phytochemical analysis was carried out using standard procedures. The plant extracts were active against the test organisms at concentrations ranging from 3.125-100 mg/mL. The methanol extracts were more active than the aqueous extracts with the highest inhibition against the yeasts, Candida albicans and Candida krusei (MIC values of 3.125 mg/mL and 6.25 mg/mL respectively). Epidermophyton floccosum and Trichophyton interdigitale were the least inhibited of all the fungal strains. Phytochemical screening revealed the presence of tannins, anthraquinones, flavonoids, cardiac glycosides, alkaloids and saponins. The anti-fungal activity of Daniella oliveri as shown in this study indicates that the plant has the potential of utilisation in the development of chemotherapeutic agents for the treatment of relevant fungal infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drug’s resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ipomoea imperati (Vahl) Griseb., Convolvulaceae, is used in traditional medicine for the treatment of inflammation, swelling and wounds, as well as to treat pains and stomach problems. This work evaluates the anti-oxidative activity by ESR (Electron Spin Resonance spectroscopy) and the preventive and curative actions of I. imperati in gastric ulcer animal model. Ipomoea imperati (200 mg/kg, p.o.) prevented the formation of gastric lesions in 78% (p<0.05) when compared with the negative control tween 80. Lanzoprazole, prevented in 85% the gastric lesions formation induced by ethanol (p<0.05). Therefore, the oral administration of I. imperati one hour before the ulcerogenic agent prevented the ulcer formation, conserving the citoprotection characteristics of the gastric mucosa and assuring the integrity of gastric glands and gastric fossets. The healing activity of I. imperati (200 mg/kg, p.o.) evaluated in chronic ulcer experiments induced by the acetic acid, was 72% (p<0.05). The positive control, ranitidine, healed 78% of the gastric lesions (p<0.05). The histological analysis confirmed the recovery of the mucosal layer and the muscle mucosal layer harmed by the acetic acid. Experiments in vitro with DPPH (2.2-diphenyl-1-picrylhydrazyl) of anti-oxidative activity demonstrated that I. imperati presents an IC50 of 0.73±0.01 mg/mL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baccharis dracunculifolia DC (Asteraceae) is a Brazilian medicinal plant popularly used for its antiulcer and anti-inflammatory properties. This plant is the main botanical source of Brazilian green propolis, a natural product incorporated into food and beverages to improve health. The present study aimed to investigate the chemical profile and intestinal anti-inflammatory activity of B. dracunculifolia extract on experimental ulcerative colitis induced by trinitrobenzenosulfonic acid (TNBS). Colonic damage was evaluated macroscopically and biochemically through its evaluation of glutathione content and its myeloperoxidase (MPO) and alkaline phosphatase activities. Additional in vitro experiments were performed in order to test the antioxidant activity by inhibition of induced lipid peroxidation in the rat brain membrane. Phytochemical analysis was performed by HPLC using authentic standards. The administration of plant extract (5 and 50 mgkg(-1)) significantly attenuated the colonic damage induced by TNBS as evidenced both macroscopically and biochemically. This beneficial effect can be associated with an improvement in the colonic oxidative status, since plant extract prevented glutathione depletion, inhibited lipid peroxidation and reduced MPO activity. Caffeic acid, p-coumaric acid, aromadendrin-4-O-methyl ether, 3-prenyl-p-coumaric acid, 3,5-diprenyl-p-coumaric acid and baccharin were detected in the plant extract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium species are the causative agents of malaria, the most devastating insect-borne parasite of human populations. Finding and developing new drugs for malaria treatment and prevention is the goal of much research. Angiotensins I and II (ang I and ang II) and six synthetic related peptides designated Vaniceres 1-6 (VC1-VC6) were assayed in vivo and in vitro for their effects on the development of the avian parasite, Plasmodium gallinaceum. Ang II and VC5 injected into the thoraces of the insects reduced mean intensities of infection in the mosquito salivary glands by 88% and 76%, respectively. Although the mechanism(s) of action is not completely understood, we have demonstrated that these peptides disrupt selectively the P. gallinaceum cell membrane. Additionally, incubation in vitro of sporozoites with VC5 reduced the infectivity of the parasites to their vertebrate host. VC5 has no observable agonist effects on vertebrates, and this makes it a promising drug for malaria prevention and chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Pigment Volume Content (PVC) on fungal growth on acrylic paint formulations with and without biocide, exposed to weathering in three different climatic regions in Brazil for four years, was studied Latex paints. with PVC of 30%, 35% and 50%, were applied to autoclaved aerated concrete blocks pre-covered with acrylic sealer and acrylic plaster They were exposed to equatorial, tropical and temperate climates in north, south-east, and south Brazil Cladosporium was the most abundant fungal genus detected in the biofilm on the surfaces of all paint formulations at all sites after four years Heaviest fungal colonization occurred in the tropical south-east and lightest in the temperate south of the country, but more phototrophs, principally cyanobacteria, were detected in the equatorial region PVC and presence of biocides were shown to be of less importance than environmental conditions (irradiance, humidity and temperature) for biofilm formation and consequent discolouration These results have important implications for testing of paint formulations (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf fractions of Wilbrandia ebracteata were investigated for anti-ulcerogenic effects in ethanol and indomethacin-induced gastric ulcer assays in mice. Protective anti-ulcer effects were detected only in the ethanol-induced ulcer assay effects after pre-treatment with MeOH extract, MeOH chlorophyll-free, chlorophyll residue, HEX, DCM, aqueous MeOH fraction, ethyl acetate (EtOAc) and aqueous fractions. A potent anti-ulcerogenic effect was determined after pre-treatment of animals with EtOAc fraction, which was fractionated for isolation of active constituents. Seven flavonoids, 3`,4`,5,6,7,8-hexahydroxyflavonol, orientin, isoorientin, vitexin, isovitexin, luteolin, 6-methoxi-luteolin were isolated from the leaves of W. ebracteata (Cucurbitaceae) by chromatographic methods and identified by their spectral data. The data suggest that flavonoids are active anti-ulcerogenic compounds from leaves of W. ebracteata. The ability of scavenging free radicals was evaluated by DPPH reduction assay by TLC of flavonoids isolated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to known heliangolides, a new eudesmanolide was isolated from the leaf rinse extract of Viguiera robusta (Asteraceae). Structural elucidation was based oil spectral analysis. It is the first report on eudesmanolides in members of the subgenus Calanticaria of Viguiera. In this work, the main isolated compound, the furanoheliangolide budlein A, besides its previously, reported in vitro and in vivo anti-inflammatory activities, inhibited human neutrophil elastase release. The inhibition was at the concentration of (16.83 +/- 1.96) mu M for formylated bacterial tripeptide (fMLP) stimulation and (11.84 +/- 1.62) mu M for platelet aggregation factor (PAF) stimulation, being slightly less active than the reference drug parthenolide. The results are important to demonstrate the potential anti-inflammatory activities of sesquiterpene lactones and corroborate the previous studies using other targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its Fe-III complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to Fe-III in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH-H)(2)](+) shows that the trivalent oxidation state is dominant over a wide potential range and that the Fe-II analogue is not a stable form of this complex. The fact that [Fe(NIH-H)(2)](+) cannot-cycle between the Fe-II and Fe-III states suggests that the production of toxic free- radical species, e.g. OH. or O2(.-),is not part of this ligand's cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of Fe-III to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its Fe-III complex are discussed in the context of understanding its anti-tumour activity.