955 resultados para Anti-Inflammatory Agents, Non-Steroidal
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) are the drugs most frequently involved in hypersensitivity drug reactions. Histamine is released in the allergic response to NSAIDs and is responsible for some of the clinical symptoms. The aim of this study is to analyze clinical association of functional polymorphisms in the genes coding for enzymes involved in histamine homeostasis with hypersensitivity response to NSAIDs. We studied a cohort of 442 unrelated Caucasian patients with hypersensitivity to NSAIDs. Patients who experienced three or more episodes with two or more different NSAIDs were included. If this requirement was not met diagnosis was established by challenge. A total of 414 healthy unrelated controls ethnically matched with patients and from the same geographic area were recruited. Analyses of the SNPs rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742 and rs1049793 in the HDC, HNMT and DAO genes were carried out by means of TaqMan assays. The detrimental DAO 16 Met allele (rs10156191), which causes decreased metabolic capacity, is overrepresented among patients with crossed-hypersensitivity to NSAIDs with an OR = 1.7 (95% CI = 1.3-2.1; Pc = 0.0003) with a gene-dose effect (P = 0.0001). The association was replicated in two populations from different geographic areas (Pc = 0.008 and Pc = 0.004, respectively). CONCLUSIONS AND IMPLICATIONS: The DAO polymorphism rs10156191 which causes impaired metabolism of circulating histamine is associated with the clinical response in crossed-hypersensitivity to NSAIDs and could be used as a biomarker of response.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) and specific inhibitors of cyclooxygenase (COX)-2, are therapeutic groups widely used for the treatment of pain, inflammation and fever. There is growing experimental and clinical evidence indicating NSAIDs and COX-2 inhibitors also have anti-cancer activity. Epidemiological studies have shown that regular use of Aspirin and other NSAIDs reduces the risk of developing cancer, in particular of the colon. Molecular pathology studies have revealed that COX-2 is expressed by cancer cells and cells of the tumor stroma during tumor progression and in response to chemotherapy or radiotherapy. Experimental studies have demonstrated that COX-2 over expression promotes tumorigenesis, and that NSAIDs and COX-2 inhibitors suppress tumorigenesis and tumor progression. Clinical trials have shown that NSAIDs and COX-2 inhibitors suppress colon polyp formation and malignant progression in patients with familial adenomatous polyposis (FAP) syndrome. Recent advances in the understanding of the cellular and molecular mechanisms of the anti-cancer effects of NSAIDs and COX-2 inhibitors have demonstrated that these drugs target both tumor cells and the tumor vasculature. The therapeutic benefits of COX-2 inhibitors in the treatment of human cancer in combination with chemotherapy or radiotherapy are currently being tested in clinical trials. In this article we will review recent advances in the understanding of the anti-tumor mechanisms of these drugs and discuss their potential application in clinical oncology.
Resumo:
The formation of new blood vessels, a process globally referred to as angiogenesis, occurs in a number of pathological conditions, such as cancer and chronic inflammation. Recent findings indicate that cyclooxygenase-2 (COX-2), the inducible form of the cyclooxygenase (COX) isoenzymes, acts as a potent inducer of angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are classical inhibitors of COX enzymes, which are widely prescribed for the treatment of inflammation, pain and fever. Selective COX-2 inhibitors (COXIBs) have been subsequently developed with the purpose to improve the safety profile of this class of therapeutics. More recently, substantial preclinical evidence demonstrated that NSAIDS and COXIBs have anti-angiogenic properties. This newly recognized activity opens the possibility of using these drugs for the treatment of angiogenesis-dependent diseases. In this article we review the most recent advances in understanding the mechanisms by which NSAIDs and COXIBs suppress angiogenesis, and we discuss their potential clinical use as anti-angiogenic drugs.
Resumo:
Chronic intake of non steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced risk of developing gastrointestinal tumors, in particular colon cancer. Increasing evidence indicates that NSAID exert tumor-suppressive activity on pre-malignant lesions (polyps) in humans and on established experimental tumors in mice. Some of the tumor-suppressive effects of NSAIDs depend on the inhibition of cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxane, which is highly expressed in inflammation and cancer. Recent findings indicate that NSAIDs exert their anti-tumor effects by suppressing tumor angiogenesis. The availability of COX-2-specific NSAIDs opens the possibility of using this drug class as anti-angiogenic agents in combination with chemotheapy or radiotherapy for the treatment of human cancer. Here we will briefly review recent advances in the understanding of the mechanism by which NSAIDs suppress tumor angiogenesis and discuss their potential clinical application as anti-cancer agents.
Resumo:
Objective: To assess the effects of selective cyclo-oxygenase-2 (COX 2) inhibitors and traditional non-steroidal anti-inflammatory drugs (NSAIDs) on the risk of vascular events. Design: Meta-analysis of published and unpublished tabular data from randomised trials, with indirect estimation of the effects of traditional NSAIDs. Data sources: Medline and Embase (January 1966 to April 2005); Food and Drug Administration records; and data on file from Novartis, Pfizer, and Merck. Review methods: Eligible studies were randomised trials that included a comparison of a selective COX 2 inhibitor versus placebo or a selective COX 2 inhibitor versus a traditional NSAID, of at least four weeks' duration, with information on serious vascular events (defined as myocardial infarction, stroke, or vascular death). Individual investigators and manufacturers provided information on the number of patients randomised, numbers of vascular events, and the person time of follow-up for each randomised group. Results: In placebo comparisons, allocation to a selective COX 2 inhibitor was associated with a 42% relative increase in the incidence of serious vascular events (1.2%/year v 0.9%/year; rate ratio 1.42, 95% confidence interval 1.13 to 1.78; P = 0.003), with no significant heterogeneity among the different selective COX 2 inhibitors. This was chiefly attributable to an increased risk of myocardial infarction (0.6%/year v 0.3%/year; 1.86, 1.33 to 2.59; P = 0.0003), with little apparent difference in other vascular outcomes. Among trials of at least one year's duration (mean 2.7 years), the rate ratio for vascular events was 1.45 (1.12 to 1.89; P = 0.005). Overall, the incidence of serious vascular events was similar between a selective COX 2 inhibitor and any traditional NSAID (1.0%/year v 0.9/%year; 1.16, 0.97 to 1.38; P = 0.1). However, statistical heterogeneity (P = 0.001) was found between trials of a selective COX 2 inhibitor versus naproxen (1.57, 1.21 to 2.03) and of a selective COX 2 inhibitor versus non-naproxen NSAIDs (0.88, 0.69 to 1.12). The summary rate ratio for vascular events, compared with placebo, was 0.92 (0.67 to 1.26) for naproxen, 1.51 (0.96 to 2.37) for ibuprofen, and 1.63 (1.12 to 2.37) for diclofenac. Conclusions: Selective COX 2 inhibitors are associated with a moderate increase in the risk of vascular events, as are high dose regimens of ibuprofen and diclofenac, but high dose naproxen is not associated with such an excess.
Resumo:
Allergy to nonsteroidal antiinflammatory drugs (NSAIDs) is a very common affliction, especially among patients with asthma and chronic urticaria. These reactions are most often of a non-immunological nature but related to pharmacologic intolerance and linked to arachidonic acid metabolism and leukotriene release. Therefore, crossed reactions implying all non-selective and semi-selective NSAIDs constitute the rule, especially during respiratory reactions to NSAIDs and for patients with chronic urticaria. In isolated acute urticaria, crossed reactions are difficult to predict so caution is necessary. Tolerance induction is possible, especially when aspirin has to be administered in small doses as antiplatelet agent. Finally, acetaminophen and selective NSAIDs as celecoxib are well tolerated by most of these patients. L'allergie aux anti-inflammatoires non stéroïdiens (AINS) est très fréquente, en particulier chez les asthmatiques ou dans l'urticaire chronique. Il s'agit en général de réactions non immunologiques, mais dues à une intolérance pharmacologique liée au métabolisme de l'acide arachidonique et à la formation de leucotriènes. Ainsi, les réactions croisées impliquant tous les AINS non sélectifs et semi-sélectifs sont la règle, surtout lors de réactions respiratoires aux AINS et dans l'urticaire chronique. Lors d'urticaire aiguë isolée, les réactions croisées sont difficiles à prédire, ainsi la prudence s'impose. Une induction de tolérance est possible, en particulier lorsque l'aspirine est nécessaire à dose faible, comme antiagrégant plaquettaire. Enfin, le paracétamol et les AINS sélectifs sont supportés par la grande majorité de ces patients.
Resumo:
Phenolic compounds are numerous and ubiquitous in the plant kingdom, being particularly present in health-promoting foods. Epidemiological evidences suggest that the consumption of polyphenol-rich foods reduces the incidence of cancer, coronary heart disease and inflammation. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Data obtained from in vivo and in vitro experiments show that CGA mostly presents antioxidant and anti-carcinogenic activities. However, the effects of CGA on the inflammatory reaction and on the related pain and fever processes have been explored less so far. Therefore, this study was designed to evaluate the anti-inflammatory, antinociceptive and antipyretic activities of CGA in rats. In comparison to control, CGA at doses 50 and 100 mg/kg inhibited carrageenin-induced paw edema beginning at the 2nd hour of the experimental procedure. Furthermore, at doses 50 and 100 mg/kg CGA also inhibited the number of flinches in the late phase of formalin-induced pain test. Such activities may be derived from the inhibitory action of CGA in the peripheral synthesis/release of inflammatory mediators involved in these responses. On the other hand, even at the highest tested dose (200 mg/kg), CGA did not inhibit the febrile response induced by lipopolysaccharide (LPS) in rats. Additional experiments are necessary in order to clarify the true target for the anti-inflammatory and analgesic effects of CGA. © 2006 Pharmaceutical Society of Japan.
Resumo:
PURPOSE: To evaluate the renal function in healthy dogs submitted to nonselective and preferential COX-2 nonsteroidal anti-inflammatory drug (NSAID) therapy. METHODS: Twenty four healthy dogs were distributed into four groups (G) (n=6): ketoprofenG - treated with ketoprofen; nimesulideG - treated with nimesulid; meloxicanG - treated with meloxican; and etodolacG - treated with etodolaco. All the dogs received the NSAIDs for 10 days by oral route. Physical examination and renal function (urinalysis, urinary sodium and gamma-glutamyl transpeptidase (GGT), serum urea, creatinine, potassium and sodium, and endogenous creatinine clearance) were evaluated before, after five and ten days (T0, T5 and T10) of the treatment in all groups. RESULTS: Changes were observed in urinalysis, with a significant increase in renal cells in the urine at T5 and T10 in nimesulideG. Significant reduction in urinary sodium in nimesulideG at T5 was observed. The clearance values were lower in ketoprofenG at T10. CONCLUSIONS: Meloxicam and etodolac were the drugs that have proven to be safer for short-term therapy in healthy dogs in relation to renal function. NSAIDs ketoprofen and nimesulide should be used judiciously in dogs with renal dysfunction, since there are promoted changes in renal function.
Resumo:
BACKGROUND: The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC) and cholesterol that mimics biomembranes. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes. CONCLUSION/SIGNIFICANCE: Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.
Resumo:
The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.
Resumo:
Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.
Resumo:
The diagnosis of inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), continues to present difficulties due to unspecific symptoms and limited test accuracies. We aimed to determine the diagnostic delay (time from first symptoms to IBD diagnosis) and to identify associated risk factors. A total of 1591 IBD patients (932 CD, 625 UC, 34 indeterminate colitis) from the Swiss IBD cohort study (SIBDCS) were evaluated. The SIBDCS collects data on a large sample of IBD patients from hospitals and private practice across Switzerland through physician and patient questionnaires. The primary outcome measure was diagnostic delay. Diagnostic delay in CD patients was significantly longer compared to UC patients (median 9 versus 4 months, P < 0.001). Seventy-five percent of CD patients were diagnosed within 24 months compared to 12 months for UC and 6 months for IC patients. Multivariate logistic regression identified age <40 years at diagnosis (odds ratio [OR] 2.15, P = 0.010) and ileal disease (OR 1.69, P = 0.025) as independent risk factors for long diagnostic delay in CD (>24 months). In UC patients, nonsteroidal antiinflammatory drug (NSAID intake (OR 1.75, P = 0.093) and male gender (OR 0.59, P = 0.079) were associated with long diagnostic delay (>12 months). Whereas the median delay for diagnosing CD, UC, and IC seems to be acceptable, there exists a long delay in a considerable proportion of CD patients. More public awareness work needs to be done in order to reduce patient and doctor delays in this target population.
Resumo:
The case of a patient with ulcerative colitis and isolated sacro-ileitis is presented. She suffered reactivation of the intestinal disease with diclofenac. The patient was allergic to sulfasalazine and was using fish oil fatty acid. The possible mechanisms of reactivation of the inflammatory bowel disease with non-steroidal anti-inflammatory drugs are discussed. It is suggested when necessary the utilization of non-steroidal anti-inflammatory drugs that inhibits the lipoxygenase in these patients.
Resumo:
Wilbrandia ebracteata (Cogn.) Cogn. is a medicinal plant belonging to the Cucurbitaceae family used popularly as an antiulcer and analgesic medicine. The hydromethanol extract of leaves was investigated to determine its anti-ulcerogenic (ethanol and indomethacin induced gastric damage) and analgesic (writhing and tail-flick tests) activities in mice (efficacy), its acute toxicity (safety), and its phytochemistry (quality control). Oral administration of leaf extract at a dose of 1000 mg/kg body wt. significantly reduced 73.3% of the total area of lesion in ethanol-induced gastric damage, but was inactive in an indomethacin-induced gastric damage test. The hydromethanol extract was also inactive in both analgesic tests. Oral administration of the leaf extract did not produce mortality in mice, while the LD50 value of the roots was 22.10 mg/kg body wt. in female mice and 58.31 mg/kg body wt. in male mice. Leaves of W. ebracteata reacted positively for steroids, flavonols, flavanones, saponins, tannins and xanthones and negative for other compounds, including cucurbitacins. Leaf extract of W. ebracteata was active as an anti-ulcerogenic, probably through increasing gastric defensive factors, and flavonoids might be the main constituent responsible for this activity.