935 resultados para Ant colony optimisation algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

R. Daly, Q. Shen and S. Aitken. Using ant colony optimisation in learning Bayesian network equivalence classes. Proceedings of the 2006 UK Workshop on Computational Intelligence, pages 111-118.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M. Galea and Q. Shen. Simultaneous ant colony optimisation algorithms for learning linguistic fuzzy rules. A. Abraham, C. Grosan and V. Ramos (Eds.), Swarm Intelligence in Data Mining, pages 75-99.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant set of information stored in different databases around the world, can be shared through peer-topeer databases. With that, is obtained a large base of knowledge, without the need for large investments because they are used existing databases, as well as the infrastructure in place. However, the structural characteristics of peer-topeer, makes complex the process of finding such information. On the other side, these databases are often heterogeneous in their schemas, but semantically similar in their content. A good peer-to-peer databases systems should allow the user access information from databases scattered across the network and receive only the information really relate to your topic of interest. This paper proposes to use ontologies in peer-to-peer database queries to represent the semantics inherent to the data. The main contribution of this work is enable integration between heterogeneous databases, improve the performance of such queries and use the algorithm of optimization Ant Colony to solve the problem of locating information on peer-to-peer networks, which presents an improve of 18% in results. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a peer-to-peer network, the nodes interact with each other by sharing resources, services and information. Many applications have been developed using such networks, being a class of such applications are peer-to-peer databases. The peer-to-peer databases systems allow the sharing of unstructured data, being able to integrate data from several sources, without the need of large investments, because they are used existing repositories. However, the high flexibility and dynamicity of networks the network, as well as the absence of a centralized management of information, becomes complex the process of locating information among various participants in the network. In this context, this paper presents original contributions by a proposed architecture for a routing system that uses the Ant Colony algorithm to optimize the search for desired information supported by ontologies to add semantics to shared data, enabling integration among heterogeneous databases and the while seeking to reduce the message traffic on the network without causing losses in the amount of responses, confirmed by the improve of 22.5% in this amount. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An earlier model underlying the foraging strategy of a pachycodyla apicalis ant is modified. The proposed algorithm incorporates key features of the tabu-search method in the development of a relatively simple but robust global ant colony optimization algorithm. Numerical results are reported to validate and demonstrate the feasibility and effectiveness of the proposed algorithm in solving electromagnetic (EM) design problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an ant colony optimization algorithm to sequence the mixed assembly lines considering the inventory and the replenishment of components. This is a NP-problem that cannot be solved to optimality by exact methods when the size of the problem growth. Groups of specialized ants are implemented to solve the different parts of the problem. This is intended to differentiate each part of the problem. Different types of pheromone structures are created to identify good car sequences, and good routes for the replenishment of components vehicle. The contribution of this paper is the collaborative approach of the ACO for the mixed assembly line and the replenishment of components and the jointly solution of the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the modern business environment, meeting due dates and avoiding delay penalties are very important goals that can be accomplished by minimizing total weighted tardiness. We consider a scheduling problem in a system of parallel processors with the objective of minimizing total weighted tardiness. Our aim in the present work is to develop an efficient algorithm for solving the parallel processor problem as compared to the available heuristics in the literature and we propose the ant colony optimization approach for this problem. An extensive experimentation is conducted to evaluate the performance of the ACO approach on different problem sizes with the varied tardiness factors. Our experimentation shows that the proposed ant colony optimization algorithm is giving promising results compared to the best of the available heuristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the basic tools to work with wireless sensors. TinyOShas a componentbased architecture which enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks. TinyOS's component library includes network protocols, distributed services, sensor drivers, and data acquisition tools ? all of which can be used asia or be further refined for a custom application. TinyOS was originally developed as a research project at the University of California Berkeley, but has since grown to have an international community of developers and users. Some algorithms concerning packet routing are shown. Incar entertainment systems can be based on wireless sensors in order to obtain information from Internet, but routing protocols must be implemented in order to avoid bottleneck problems. Ant Colony algorithms are really useful in such cases, therefore they can be embedded into the sensors to perform such routing task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models. © 2013 Polish Information Processing Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ant colony optimisation algorithms model the way ants use pheromones for marking paths to important locations in their environment. Pheromone traces are picked up, followed, and reinforced by other ants but also evaporate over time. Optimal paths attract more pheromone and less useful paths fade away. The main innovation of the proposed Multiple Pheromone Ant Clustering Algorithm (MPACA) is to mark objects using many pheromones, one for each value of each attribute describing the objects in multidimensional space. Every object has one or more ants assigned to each attribute value and the ants then try to find other objects with matching values, depositing pheromone traces that link them. Encounters between ants are used to determine when ants should combine their features to look for conjunctions and whether they should belong to the same colony. This paper explains the algorithm and explores its potential effectiveness for cluster analysis. © 2014 Springer International Publishing Switzerland.