880 resultados para Anostomidae family - Cytogenetic studies
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Four fish species of the family Pimelodidae were analyzed. Bergiaria westermani and two different Pimelodus species have the same diploid chromosome number (2n - 56). Despite some differences in chromosome structure, these species are highly similar in karyotype and differ from Pimelodella sp., which presents a reduction in chromosome number to 2n = 46. The data confirm the extensive chromosome variability existing in this family, characterized by intraindividual and/or population polymorphisms of a structural nature which may or may not be sexlinked, and by the presence of supernumerary chromosomes.
Resumo:
We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, ktonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. Copyright (C) 2002 S. KargerAG, Basel.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Myelodysplastic syndromes (MDS) and juvenile myelomonocytic leukemia (JMML) are rare hematopoietic stem cell diseases affecting children. Cytogenetics plays an important role in the diagnosis of these diseases. We report here the experience of the Cytogenetic Subcommittee of the Brazilian Cooperative Group on Pediatric Myelodysplastic Syndromes (BCG-MDS-PED). We analyzed 168 cytogenetic studies performed in 23 different cytogenetic centers; 84 of these studies were performed in patients with confirmed MDS (primary MDS, secondary MDS, JMML, and acute myeloid leukemia/MDS+Down syndrome). Clonal abnormalities were found in 36.9% of the MDS cases and cytogenetic studies were important for the detection of constitutional diseases and for differential diagnosis with other myeloid neoplasms. These data show the importance of the Cooperative Group for continuing education in order to avoid a late or wrong diagnosis.
Resumo:
The mitotic chromosomes, nucleolus organizer regions (NORs), C-banding pattern and nuclear DNA content of Mastacembelus armatus were studied. The karyotype (2n = 48; 10m + 6sm + 4st + 28a) was characterized by the presence of one chromosome pair with NORs and a small quantity of heterochromatin. The DNA content observed in erythrocyte nuclei of M. armatus was 1.39 +/- 0.08 pg. Comparison of this karyotype with those of other Synbranchiformes revealed a strong similarity, suggesting that small chromosome rearrangements may have been maintained during its evolutionary history.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The chromosomes of 173 specimens representing eleven species of the Tropidurus torquatus group, from 33 localities in Brazil, were analysed after Giemsa staining, C-banding, NORs, and replication banding techniques. A karyotype with 2n = 36, including 12 macrochromosomes and 24 microchromosomes (12 M + 24 m), and sex determination of the XY:XX type were found in Tropidurus cocorobensis, T. erythrocephalus, T. etheridgei, T. hispidus, T. hygomi, T. montanus, T. mucujensis, T. oreadicus, and T. torquatus. The two other species, T. itambere and T. psammonastes, presented 2n = 36 (12 M + 23 m) karyotype only in females while males had 2n = 35 (12 M + 23 m), due to the sex determination of the X(1)X(2)Y:X(1)X(1)X(2)X(2) type. Other interspecific differences as well as some intraspecific variation regarding the NORs and C-banding patterns have been observed, mainly in the microchromosome set. on the contrary, the macrochromosomes were highly conservative. Although consistent karyotypic diversity occurred in the torquatus group, the cytogenetic data obtained up to now did not allow us to clarify the phylogenetic relationships of the species. Nevertheless, the geographical distribution of the distinct cytotypes in T. hispidus and T. torquatus suggested that more than one species might be involved in each case.
Resumo:
A fast, simple, and inexpensive procedure to establish fibroblast culture from bat lungs is presented. Explants plated following mechanical disaggregation provide good quality preparations for cytogenetics studies in about one week. Cultures established with this procedure may also be used for other biological studies.